

Application Engineering

COPELAND

BULLETIN

AE4-1486 R2 November 2023

6-15 Ton YA*K1 and YP*K1 Copeland™ Scroll Compressors

TABLE OF CONTENTS

IMPORTANT SAFETY INFORMATION	Suction and Discharge Fittings
Responsibilities, Qualifications and Training	
Terminal Venting and Other Pressurized System	
Hazards2	
Flammable Refrigerant Hazards	Pressure Testing11
Electrical Hazards	Assembly Line System Charging Procedure11
Hot Surface and Fire Hazards	B 'Hipot' (AC High Potential) Motor Testing11
Lifting Hazards	
POE Oil Hazards	3
Precautions	
Signal Word Definitions	Field Replacement12
	Removing Oil12
INTRODUCTION	5 Electrical12
Nomenclature	
Operating Envelopes	Manifolded Compressor Replacement12
High Pressure Control	Start-Up of a New or Replacement Compressor 12
Low Pressure Control	Refrigerant Retrofits13
Advanced Scroll Temperature Protection (ASTP) 5	New Installations14
Discharge Temperature Protection	Field Service14
Shut Down Device	
Discharge Check Valve6	Figures & Tables
Shell Temperature	
Compressor Cycling6	
Long Pipe Lengths / High Refrigerant Charge	Figure 2 Caroll Tube Fitting Prozing 14
Suction and Discharge Fittings	
System Tubing Stress	
Accumulators	
Off-Cycle Migration Control	
Crankcase Heaters	Figure 6 Operating Envelope VA104K1 VA122K1 19
Pump Down Cycle	
Pump Out Cycle	
Reversing Valves	
Contaminant Control	
Oil Type	Fig. 10. Openity F. 1 10. VP405K4 VP405K4 00.
Power Factor Correction	
Soft Starters	
Manifolded Compressors	
	Table 1- Product Features24
VARIABLE SPEED OPERATION	
Introduction	Table 3 - Refrigerant Charge Limits25
APPLICATION TESTS	9
ASSEMBLY LINE PROCEDURES 10	
Installing the Compressor10	
Mounting 10)

IMPORTANT SAFETY INFORMATION

Those involved in the design, manufacture, and installation of a system, system purchasers, and service personnel may need to be aware of hazards and precautions discussed in this section and throughout this document. OEMs integrating the compressor into a system should ensure that their own employees follow this bulletin and provide any necessary safety information to those involved in manufacturing, installing, purchasing, and servicing the system.

Responsibilities, Qualifications and Training

- OEMs are responsible for system design, selection of appropriate components, integration of this component into the system, and testing the system. OEMs must ensure that staff involved in these activities are competent and qualified.
- OEMs are also responsible for ensuring that all product, service, and cautionary labels remain visible or are appropriately added in a conspicuous location on the system to ensure they are clear to any personnel involved in the installation, commissioning, troubleshooting or maintenance of this equipment.
- Only qualified and authorized HVAC or refrigeration personnel are permitted to install, commission, troubleshoot and maintain this equipment. Electrical connections must be made by qualified electrical personnel.
- Observe all applicable standards and codes for installing, servicing, and maintaining electrical and refrigeration equipment.

Terminal Venting and Other Pressurized System Hazards

If a compressor's electrical terminal pin loses its seal, pressurized oil, refrigerant, and debris may spray out. This is called "terminal venting".

The ejected debris, oil, and refrigerant can injure people or damage property. The oil and refrigerant spray can be ignited by electrical arcing at the terminal or any nearby ignition source, producing flames that may project a significant distance from the compressor. The distance depends on the pressure and the amount of refrigerant and oil mixture in the system. The flames can cause serious or fatal burns and ignite nearby materials.

Each compressor has a terminal cover or molded plug that covers electrical connections. The cover or plug helps to protect against electric shock and the risks of terminal venting. If terminal venting occurs, the cover or plug helps contain the spray of refrigerant and oil and reduces the risk of ignition. If ignition occurs, the plug or cover helps contain the flames. However, neither the terminal cover nor the molded plug can completely eliminate the risk of venting, ignition, or electric shock.

See www.Climate.Emerson.com/terminal for more details about terminal venting.

Additionally, a compressor's refrigerant lines keep refrigerant and oil under pressure. When removing or recharging refrigerant from this component during service, this can pose a pressurized fluid hazard.

Flammable Refrigerant Hazards

If flammable refrigerant is released from a system, an explosive concentration can be present in the air near the system. If there is an ignition source nearby, a release of flammable refrigerant can result in a fire or explosion. While systems using flammable refrigerant are designed to mitigate the risk of ignition if the refrigerant is released, fire and explosion can still occur.

See <u>Climate.Emerson.com/flammable</u> for more information on flammable refrigerant safety.

Electrical Hazards

Until a system is de-energized, and capacitors have been discharged, the system presents a risk of electric shock.

Hot Surface and Fire Hazards

While the system is energized, and for some time after it is deenergized, the compressor may be hot. Touching the compressor before it has cooled can result in severe burns. When brazing system components during service, the flames can cause severe burns and ignite nearby combustible materials.

Lifting Hazards

Certain system components may be very heavy. Improperly lifting system components or the compressor can

result in serious personal injury. Use proper lifting techniques when moving.

POE Oil Hazards

This equipment contains polyolester (POE) oils. Certain polymers (e.g., PVC/CPVC and polycarbonate) can be harmed if they come into contact with POE oils. If POE oil contacts bare skin, it may cause an allergic skin reaction.

Precautions

- Always wear personal protective equipment (gloves, eye protection, etc.).
- Keep a fire extinguisher at the jobsite at all times.
- Keep clear of the compressor when power is applied.
 - IMMEDIATELY GET AWAY if you hear unusual sounds in the compressor. They can indicate that terminal pin ejection may be imminent. This may sound like electrical arcing (sizzling, sputtering or popping). However, terminal venting may still occur even if you do not hear any unusual sounds.
- Never reset a breaker or replace a blown fuse without performing appropriate electrical testing.
 - A tripped breaker or blown fuse may indicate an electrical fault in the compressor. Energizing a compressor with an electrical fault can cause terminal venting. Perform checks to rule out an electrical fault.

- Disconnect power and use lock-out/tag-out procedures before servicing.
 - Before removing the terminal cover or molded plug, check that ALL electrical power is disconnected from the unit. Make sure that all power legs are open. (*Note: The system may have more than one power supply.*)
 - Discharge capacitors for a minimum of two minutes
 - Always use control of hazardous energy (lock-out/tag-out) procedures to ensure that power is not reconnected while the unit is being serviced.
- Allow time for the compressor to cool before servicing.
 - Ensure that materials and wiring do not touch high temperature areas of the compressor.
- Keep all non-essential personnel away from the compressor during service.
- Remove refrigerant from both the high and low side of the compressor. Use a recovery machine and cylinder designed
 for flammable refrigerants. Do not use standard recovery machines because they contain sources of ignition such as
 switches, high and low pressure controls, and relays. Only vent the refrigerant into the atmosphere if the system is in a
 well-ventilated area.
- Never us a torch to remove the compressor. Only tubing cutters should be used.
- Use an appropriate lifting device to install or remove the compressor.
- Never install a system and leave it unattended when it has no charge, a holding charge, or with the service valves closed without electrically locking out the system.
- Always wear appropriate safety glasses and gloves when brazing or unbrazing system components.
- Charge the system with only approved refrigerants and refrigeration oils.
- Keep POE oils away from certain polymers (e.g., PVC/CPVC and polycarbonate) and any other surface or material that might be harmed by POE oils. Proper protective equipment (gloves, eye protection, etc.) must be used when handling POE lubricant. Handle POE oil with care. Refer to the Safety Data Sheet (SDS) for further details.
- Before energizing the system:
 - 1. Securely fasten the protective terminal cover or molded plug to the compressor, and
 - 2. Check that the compressor is properly grounded per the applicable system and compressor requirements.

Signal Word Definitions

The signal word explained below are used throughout the document to indicate safety messages.

▲ DANGER

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury

INTRODUCTION

The 6-to-15-ton YA*K1 and YP*K1 Copeland™ scroll compressors are designed for a variety of commercial air conditioning and chiller applications. These compressors are intended only for refrigeration and air conditioning use and should not be used in any other applications. This bulletin describes the operating characteristics, design features, and application requirements for these models.

The YA*K1 scroll compressors are qualified with the R454B refrigerant.

The YP*K1 compressors are qualified with the R32 refrigerant.

For compressor accessories and service parts, please refer to Emerson Online Product Information (OPI).

Reference the AE4-1430 Compressor Multiples bulletin for multiple compressor applications. For additional bulletins and compressor information, please refer to Emerson Online Product Information (OPI).

Nomenclature

The model numbers of the Copeland scroll compressors include the approximate nominal cooling capacity operating at 60 Hz at standard operating conditions. An example would be the YA182K1E-TFD, which has 182,000 Btu/hr (53.3kW) cooling capacity at the AHRI high temperature air conditioning rating point. Note that the same compressor will have approximately 5/6 of this capacity or 151,667 Btu/hr (45.3kW) when operated at 50 Hz. See **Figure 3** for more information regarding nomenclature.

Operating Envelopes

Figures 6 thru 10 illustrate the operating envelopes for the YA*K1 and YP*K1 compressors with the respective refrigerant. The operating envelopes represent operating conditions with 9°F (5K) and 20°F (11K) superheat in the return gas unless otherwise shown. The steady-state operating condition of the compressor must remain inside the prescribed operating envelope. Excursions outside of the envelope should be brief and infrequent. Use of refrigerants other than the qualified refrigerant voids the compressor UL recognition and may increase the risk of malfunction and serious injury or death.

High Pressure Control

A high pressure cut-out control must be used in all applications.

The 6-to-15-ton Copeland scroll compressors do not have internal pressure relief valves. The system designer should determine the required high pressure value cutout for the desired system and application. The high pressure control should have a manual reset feature for the highest level of system protection.

If any type of discharge line shut-off valve is used, the high pressure control must be installed between the compressor discharge fitting and the valve. Compressors with rotalock discharge fittings have a connection on the rotalock fitting for the high pressure cut-out switch connection.

Compressors requiring certification to the Pressure Equipment Directive (PED):

The nameplate will be marked with a TS min which is defined as the minimum allowable temperature. The nameplate will also be marked with a TS max which is defined as the maximum allowable temperature (max design temperature, highest temp that can occur during operation or standstill of the refrigeration system or during test under test conditions, specified by the manufacturer). Refer to <u>Emerson Online Product Information</u> (OPI) for PED specific information.

Low Pressure Control

A low pressure control is highly recommended for loss of charge protection and other system fault conditions that may result in very low evaporating temperatures. Loss of system charge will result in overheating and recycling of the motor overload protector. Prolonged operation in this manner could result in oil pump out and eventual bearing failure. The low-pressure cut-out setting will depend on the application type and minimum expected evaporating temperature. A cut out setting no lower than 20 psig (1.4 bar) is recommended.

Advanced Scroll Temperature Protection (ASTP)

Some 6 to 15T YA, YP compressors include a Therm-O-Disc™ temperature-sensitive snap disc which provides compressor protection from discharge gas overheating (See **Table 1**). Events such as loss of charge, evaporator blower failure, or low side charging with inadequate pressure will cause the discharge gas

to quickly rise above a critical temperature. Once this critical temperature is reached, the ASTP feature will cause the scrolls to separate and stop pumping but allow the motor to continue to run. After the compressor runs for some time without pumping gas, the motor overload protector will open. Depending on the heat buildup in the compressor, it may take up to two hours for the ASTP to reset. The addition of the Advanced Scroll Temperature Protection makes it possible to eliminate the discharge line thermostat previously required in heat pump applications. A graphic explanation and a short video clip are available on our emersonclimate.com/ASTP. website www. Compressors in this size range that have ASTP are identified with the ASTP label shown below in Figure 1.

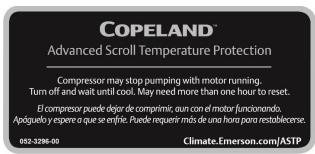


Figure 1 - ASTP Label

Discharge Temperature Protection

A discharge line thermistor should be used with the compressors for discharge temperature protection. The discharge line thermistor should be installed within 6" (15cm) of the compressor and well insulated. The maximum discharge line temperature should be no greater than 275°F (135°C) within the operating envelope

unless otherwise noted in the operating envelope. For enhanced protection, a lower discharge line temperature limit may be used.

Shut Down Device

See **Table 1** for shut down device technologies for specific models. Since Copeland scroll compressors are also excellent gas expanders, they may run backwards for a brief period after shutdown as the internal pressures equalize.

Discharge Check Valve

The YA and YP67-122 compressors include a low mass, disk type check valve in the discharge fitting of the compressor. The YA and YP137-182 compressors include a spring assist, disk-type check valve in the discharge fitting of the compressor. The check valve prevents the high pressure gas in the condenser from rapidly flowing back through the compressor after shutdown. The check valve is not leak-proof. Performance of the check valves for recycling pump down applications hasn't been evaluated at all pressure differentials. Low pressure differentials may result in unacceptable leak-back rates.

Shell Temperature

Compressor top cap temperatures can be very hot. Care must be taken to ensure that wiring or other materials which could be damaged by these temperatures do not come into contact with these potentially hot areas.

Compressor Cycling

There is no set answer to how often scroll compressors can be started and stopped in an hour, since it is highly dependent on system configuration. There is no minimum off time because Copeland scroll compressors start unloaded, even if the system has unbalanced pressures. The most critical consideration is the minimum run time required to return oil to the compressor after startup. To establish the minimum run time, obtain a sample compressor equipped with a sight tube (available from Emerson) and install it in a system with the longest connecting lines and highest internal volume that the system may have. The minimum on time becomes the time required for oil lost during compressor startup to return to the compressor sump and restore a minimal oil level that will assure oil pick up through the crankshaft. The minimum oil level required in the Yx67-122 compressors is 1.6" (40 mm) below the center of the compressor sight-glass. The minimum oil level required in the Yx137-182 compressors is 2" (50 mm)

below the center of the compressor sight-glass. The oil level should be checked with the compressor "off" to avoid the sump turbulence when the compressor is running. Cycling the compressor for a shorter period than this, for instance to maintain very tight temperature control, will result in progressive loss of oil and damage to the compressor.

Long Pipe Lengths / High Refrigerant Charge

Some systems may contain higher than normal refrigerant charges. Systems with large reheat coils, low ambient condenser flooding, or systems with multiple heat exchangers are among some system configurations that may require additional lubricant. If the compressors have a sight glass for oil level viewing, the oil level should always be checked during OEM assembly, field commissioning, and field servicing. An estimation of the amount of additional lubricant to add to the compressor(s) when the circuit charge exceeds 20 pounds of refrigerant is as follows:

Single compressor application: 0.5 fluid ounce of oil per pound of refrigerant.

For multiple compressor applications, refer to AE4-1430 for additional oil estimate for tandems and trios.

The oil level must be carefully monitored during system development, and corrective action should be taken if the compressor oil level falls below the minimum oil level. The compressor oil level should be checked with the compressor "off" to avoid the sump turbulence when the compressor is running.

These compressors are available to the OEM with a production sight-glass that can be used to determine the oil level in the compressor in the end-use application. These compressors are also available to the OEM with an oil Schrader fitting on the side of the compressor to add additional oil if needed because of long lengths of piping or high refrigerant charge. No attempt should be made to increase the oil level in the sight-glass above the 3/4 full level. A high oil level is not sustainable in the compressor and the extra oil will be pumped out into the system causing a reduction in system efficiency and a higher-than-normal oil circulation rate.

Suction and Discharge Fittings

The compressors have copper plated steel suction and discharge or threaded rotalock fittings. See **Figure 2** for assembly line and field brazing recommendations and **Table 1** for rotalock torque requirements.

System Tubing Stress

System tubing should be designed to keep tubing stresses under the endurance limit of the copper tubing type used (i.e., Type K, L, etc.). Start, stop and running (resonance) cases should be evaluated to ensure long term reliability.

For variable speed applications, the suction and discharge tubing must be evaluated to determine the resonant frequencies. Once the resonant frequencies are known, they can be shifted to a desired range by changing the mass of the line for constant speed applications or they can be avoided for variable speed applications. Application engineering is available to recommend additional tests and to evaluate test results.

Accumulators

The use of accumulators is very dependent on the application. The Copeland scroll compressor's inherent ability to handle liquid refrigerant during occasional operating flood back situations make the use of an accumulator unnecessary in most applications. The OEM is responsible for determining if an accumulator is needed and the selection of the accumulator. Consideration for additional oil needed for the accumulator should be taken.

Off-Cycle Migration Control

Excessive migration of refrigerant to the compressor during the off-cycle can result in oil pump-out on start up, excessive starting noise and vibration, bearing erosion, and broken scrolls if the hydraulic slugging pressure is high enough. For these reasons, off-cycle refrigerant migration must be minimized. The following three sections summarize off-cycle migration techniques.

Crankcase Heaters

A crankcase heater is required when the system charge exceeds the values listed in **Table 2**. This requirement is independent of system type and configuration. The initial start-up in the field is a very critical period for any compressor because all load-bearing surfaces are new and require a short break-in period to carry high loads under adverse conditions. The crankcase heater must be turned on a minimum of 12 hours prior to starting the compressor. This will help prevent oil dilution and bearing stress on initial startup.

To properly install the crankcase heater, the heater should be installed in the location illustrated in **Figure 4**. Tighten the clamp screw carefully, ensuring that the

heater is uniformly tensioned along its entire length and that the circumference of the heater element is in complete contact with the compressor shell. It's important that the clamp screw is torqued to the range shown in **Table 1** to ensure adequate contact and to prevent heater burnout. Never apply power to the heater in free air or before the heater is installed on the compressor to prevent overheating and burnout.

Crankcase heaters must be properly grounded to reduce the potential of a fire or shock hazard.

Pump Down Cycle

If a pump down cycle is required by the system designer, a onetime pump down at the end of the cooling cycle is preferred over a recycling pump down. Although not preferred, a recycling pump down cycle can be used to minimize off-cycle refrigerant migration to the compressor. The risk of a short cycling condition that can lead to oil pump out, excessive contactor wear, unnecessary energy use, and excessive low pressure cut-out switch cycles make recycling pump down undesirable. In lieu of the pump down cycles mentioned above, simply closing a liquid line solenoid valve when the compressor cycles off is a good, simple, and cost effective method of minimizing off-cycle refrigerant migration.

Pump Out Cycle

A pump out cycle has been successfully used by some manufacturers of large rooftop units. After an extended off period, a typical pump out cycle will energize the compressor for up to one second followed by an off time of 5 to 20 seconds. This cycle is usually repeated a second time, the third time the compressor stays on for the cooling cycle. If pump out cycle is employed, a crankcase heater must be used if the circuit charge amount exceeds the values listed in **Table 2**.

Reversing Valves

Since Copeland scroll compressors have very high volumetric efficiency, their displacements are lower than those of comparable capacity reciprocating compressors.

Reversing valve sizing must be within the guidelines of the valve manufacturer. Required pressure drop to ensure valve shifting must be measured throughout the operating range of the unit and compared to the valve manufacturer's data. Low ambient heating conditions with low flow rates and low pressure drop across the valve can result in a valve not shifting. This can result in a condition where the compressor appears to be not pumping (i.e., balanced pressures). It can also result in elevated compressor sound levels.

During a defrost cycle, when the reversing valve abruptly changes the refrigerant flow direction, the suction and discharge pressures will go outside of the normal operating envelope. The sound that the compressor makes during this transition period is normal, and the duration of the sound will depend on the coil volume, outdoor ambient temperature, and system charge level. If the compressor is operating during a defrost cycle the compressor should operate between 50-60Hz. The preferred method of mitigating defrost sound is to shut down the compressor for 20 to 30 seconds when the reversing valve changes position going into and coming out of the defrost cycle. This technique allows the system pressures to reach equilibrium without the compressor running. The additional start-stop cycles do not exceed the compressor design limits, but suction and discharge tubing design should be evaluated.

The reversing valve solenoid should be wired so that the valve does not reverse when the system is shut off by the operating thermostat in the heating or cooling mode. If the valve is allowed to reverse at system shutoff, suction and discharge pressures are reversed to the compressor. This results in pressures equalizing through the compressor which can cause the compressor to slowly rotate backwards until the pressures equalize. This condition does not affect compressor durability but can cause unexpected sound after the compressor is turned off.

Contaminant Control

Manufacturing processes have been designed to minimize the introduction of solid or liquid contaminants. Dehydration and purge processes ensure minimal moisture levels in the compressor, and continuous auditing of lubricant moisture levels ensures that moisture isn't inadvertently introduced into the compressor. However, due to the manufacturing processes, Copeland scroll compressors will contain a miniscule amount of solid and liquid contaminants when they leave the factory.

During unit assembly and field servicing, compressors shouldn't be left open to the atmosphere for longer than five minutes. It is generally accepted that system moisture levels should be maintained below 50 ppm. A

filter-drier is required on all POE lubricant systems to prevent solid particulate contamination, oil dielectric strength degradation, ice formation, oil hydrolysis, and metal corrosion. It is the system designer's responsibility to make sure that the filter-drier is adequately sized to accommodate the contaminants from manufacturing processes which leave solid or liquid contaminants in the evaporator coil, condenser coil, and interconnecting tubing plus any contaminants introduced during the field installation process. Molecular sieve and activated alumina are two filterdrier materials designed to remove moisture and mitigate acid formation. A 100% molecular sieve filter can be used for maximum moisture capacity. A more conservative mix, such as 75% molecular sieve and 25% activated alumina, should be used for service applications.

Oil Type

Polyolester oil (POE) is used in YA*K1 and YP*K1 compressors. Please refer to Emerson publication 93-11 available at climate.emerson.com/en-us for specific POE oil grade in centistokes for each refrigerant.

See the compressor nameplate for the original oil charge. A complete recharge should be approximately four to six fluid ounces (118-177ml) less than the nameplate value. Please refer to Online Product Information at climate.emerson.com/en-us for model specific oil charge and recharge values. If additional oil is needed in the field, there are multiple POE brands available at your local distributor and wholesalers.

AWARNING

POE may cause an allergic skin reaction and must be handled carefully. Proper protective equipment (gloves, eye protection, etc.) must be used when handling POE lubricant. POE must not come into contact with any surface or material that might be harmed by POE, including, certain polymers (e.g., PVC/CPVC and polycarbonate). Refer to the Safety Data Sheet (SDS) located at Emerson Online Product Information (OPI) for the specific oil.

Power Factor Correction

If power factor correction is necessary in the end-use application, please see <u>AE-1249</u> for more information on this topic.

Soft Starters

Soft starters can be used with the compressors to reduce inrush current. Soft starters should be selected

in accordance with the soft starter manufacturer's recommendations, taking into consideration ambient temperature, number of starts per hour, and compressor amps. The maximum ramp up time should not exceed 3 seconds.

Manifolded Compressors

Tandem and trio compressor assemblies are available for purchase from Emerson. In lieu of purchasing the assembled tandem or trio, OEMs can purchase the manifold-ready compressors and perform the assembly in their factory. Drawings of tandem and trio compressor assemblies are available from Emerson by contacting your Application Engineer. Part numbers for manifolds and other service parts are available by contacting Application Engineering. Customers who choose to design and build their own manifolds for tandem and trio compressor assemblies are ultimately responsible for the reliability of those manifold sets.

Reference the <u>AE-1430 bulletin</u> for information on multiple compressors applications and design considerations.

VARIABLE SPEED OPERATION

Introduction

The 6-to-15-ton Copeland scroll compressors described in this bulletin are qualified for a speed range listed in the operating envelopes in **Figures 6 through 10**. Contact Application Engineering if other speed ranges are desired for a specific compressor model.

APPLICATION TESTS

The system designer is responsible for testing the system to ensure it operates as designed. These tests should be performed during system development and are dependent on the system type and amount of refrigerant charge. These application tests are to help identify errors in system design that may produce conditions that could lead to compressor failure.

The evaporating temperature and the bottom shell temperature shall be taken with a high sampling rate during the entire oil return or oil balance testing and under all tested conditions. The liquid level in the sight tube should be observed and recorded also. Testing conditions shall include defrost and varying loads. If the system is reversible, the tests should be conducted in both operation modes.

System engineers should review the system design and operation to identify the critical conditions and to check oil return, oil balancing and liquid floodback. Typically,

the following situations should be considered:

- In single compressor systems: to check oil return, testing conditions shall be at minimum mass flow and minimum density of suction gas in continuous and frequent start-stop-cycling.
- In multiple compressor systems: to check oil return and oil balancing in the tandem or trio, testing conditions shall be at the corner points of the system application envelope in continuous and frequent start-stop-cycling.
- In all systems: to test liquid floodback, all possible transient operation conditions in the system should be checked, compressor frequent start/stop, compressor start after long off time with migration, defrost, switching between the operation modes in reversible systems, load changes, fans or pumps cycling at low load and more. To evaluate the risk of liquid floodback, please refer to the oil dilution chart in Figure 10. Liquid level and superheat at compressor suction should be checked.

For variable speed applications, the above oil balancing and system oil return tests must be performed. The concern is that a very low oil level will develop after extended hours of operation at low speed. In addition to oil balancing and system oil return tests, the suction and discharge tubing must be evaluated to determine the resonant frequencies. Once the resonant frequencies are known, they can be shifted to a safe range by changing the mass of the line for constant speed applications or they can be avoided for variable speed applications.

Application Engineering is available to recommend additional tests and to evaluate test results.

ASSEMBLY LINE PROCEDURES

Installing the Compressor

Use care and the appropriate material handling equipment when lifting and moving compressors. Personal protective equipment must be used.

Copeland scroll compressors leave the factory dehydrated and with a positive dry air charge. Plugs should not be removed from the compressor until the compressor has had sufficient time to warm up if stored outside, is ready for assembly in the unit and has been set into the unit. The suggested warm up time is one hour per 4°F (2 Kelvin) difference between outdoor and indoor temperature. The larger suction plug should be removed first to relieve the internal dry air pressure. Removing the smaller discharge plug could result in a spray of oil out of this fitting since some oil accumulates in the head of the compressor after Emerson's run test and may also result in oil mist coating the suction tube making brazing difficult. The inside of both fittings should be wiped with a lint free cloth to remove residual oil prior to brazing. A compressor containing POE oil should never be left open longer than 5 minutes.

The copper coated steel suction tube should be cleaned before brazing (see Figure 2). No object (e.g., a swaging tool) should be inserted deeper than two inches (51 mm) into the suction tube, or it might damage the suction screen and motor.

Mounting

Many OEM customers buy the mounting parts directly from the supplier, but Emerson's grommet design and durometer recommendations should be followed for best vibration reduction through the mounting feet.

Suction and Discharge Fittings

These compressors are available with stub tube or rotalock connections. The stub tube version has copperplated steel suction and discharge fittings. Due to the different thermal properties of steel and copper, brazing procedures may have to be changed from those commonly used. See Figure 2 for assembly line and field brazing procedures and Table 1 for Rotalock torque values.

Assembly Line Brazing Procedure

Personal protective equipment must be used during brazing operation. Heat shields should be used to prevent overheating or burning nearby temperature sensitive parts. A fire extinguisher should be accessible.

Figure 2 discusses the proper procedures for brazing the suction and discharge lines to a scroll compressor.

It is important to flow nitrogen through the system while brazing all joints during the system assembly process.

Nitrogen displaces the air and prevents the formation of copper oxides in the system. If allowed to form, the copper oxide flakes can later be swept through the system and block screens such as those protecting capillary tubes, thermal expansion valves, and accumulator oil return holes. The blockage - whether it

is of oil or refrigerant - is capable of doing damage resulting in compressor failure.

Unbrazing System Components

Before attempting to braze, it is important to recover all refrigerant from both the high and low side of the system.

If the refrigerant charge is removed from a scrollequipped unit by evacuating the high side only, it is possible for the scrolls to seal, preventing pressure equalization through the compressor. This may leave the low side shell and suction line tubing pressurized.

Removing Compressors

Before attempting to cut copper tubing, it is important to recover all refrigerant from both the high and low side of the system.

Instructions should be provided in appropriate product literature and assembly (line repair) areas. If a compressor removal is required, the compressor should be cut out of system rather than unbrazed. See **Figure 2** for the proper compressor removal procedure.

Pressure Testing

Never pressurize the compressor to more than 475 psig (33 bar) for leak checking purposes. Never pressurize the compressor from a nitrogen cylinder or other pressure source without an appropriately sized pressure regulating and relief valve.

The pressure used on the line to meet the U.L. burst pressure requirement must not be higher than 475 psig (33 bar). Higher pressure may result in permanent deformation of the compressor shell and possible misalignment, bottom cover distortion and/or shell rupture.

Assembly Line System Charging Procedure

Systems should be charged with liquid on the high side to the extent possible. Most of the charge should be pumped in the high side of the system to prevent low voltage starting difficulties, hipot motor test failures, and bearing washout during the first-time start on the

assembly line. If additional charge is needed, it should be added as liquid to the low side of the system with the compressor operating. Pre-charging on the high side and adding liquid on the low side of the system are both meant to protect the compressor from operating with abnormally low suction pressures during charging. Do not operate the compressor without enough system charge to maintain at least 55 psig (3.8 bar) suction pressure. Do not operate the compressor with the low pressure cut-out disabled. Do no operate with a restricted suction or liquid line.

Depending on the discharge pressure, allowing pressure to drop below 55 psig (3.8 bar) for more than a few seconds may overheat the scrolls and cause early drive bearing damage.

Do not use the compressor to test the opening set point of a high pressure cutout.

Bearings are susceptible to damage before they have had several hours of normal running for proper break in.

'Hipot' (AC High Potential) Motor Testing

Use caution with high voltage and never hipot test when compressor is in a vacuum.

Copeland scroll compressors are configured with the motor down and the pumping components at the top of the shell. As a result, the motor can be immersed in refrigerant to a greater extent than hermetic reciprocating compressors when liquid refrigerant is present in the shell. In this respect, the scroll is more like semi-hermetic compressors that have horizontal motors partially submerged in oil and refrigerant. When Copeland scroll compressors are hipot tested with liquid refrigerant in the shell, they can show higher levels of leakage current than compressors with the motor on top. This phenomenon can occur with any compressor when the motor is immersed in refrigerant. The level of current leakage does not present any safety issue. To lower the current leakage reading, the system should be operated for a brief period to redistribute the refrigerant to a more normal configuration and the system hipot tested again. See AE4-1294 for megohm testing recommendations. Under no circumstances should the hipot test be performed while the compressor is under a vacuum.

U.L. sets the requirement for dielectric strength testing and they should be consulted for the appropriate voltage and leakage values.

Final Run Test

Customers that use a nitrogen final run test must be careful to not overheat the compressor. Nitrogen is not a good medium for removing heat from the compressor, and the scroll tips can be easily damaged with high compression ratios and/or long test times. Copeland scroll compressors are designed for use with refrigerant and testing with nitrogen may result in a situation where the compressor does not develop a pressure differential (no pump condition). When testing with nitrogen, the compressor must be allowed to cool for several minutes between tests.

SERVICE PROCEDURES

Field Replacement

Use care and the appropriate material handling equipment when lifting and moving compressors. Personal protective equipment must be used.

Removing Oil

If the oil level is higher than the oil Schrader fitting on the sump of the compressor oil can be drained from this fitting until the oil level reaches the level of the Schrader fitting. To remove oil from the compressor when the oil level is below the oil Schrader fitting one of two different procedures can be used. The first procedure is to remove the compressor from the system and drain the oil from the compressor suction connection. This method ensures complete removal of the oil from the compressor. The second procedure is to remove the compressor sight-glass and insert a hose into the sump of the compressor and draw the oil out with a hand-held pump.

Electrical

When replacing a compressor, especially one that has been in the field for several years, it is always a good idea to replace the contactor.

Note: See the locked rotor on the nameplate of the new compressor and make sure the contactor exceeds this locked rotor rating.

Compressor Replacement After a Motor Burn

In the case of a motor burn, most of the contaminated oil will be removed with the compressor. The rest of the oil is cleaned with the use of suction and liquid line filter driers. A 100% activated alumina suction filter drier is recommended but must be removed after 72 hours. See <u>AE24-1105</u> for clean up procedures and <u>AE11-1297</u> for liquid line filter-drier recommendations.

It is highly recommended that the suction accumulator be replaced if the system contains one.

This is because the accumulator oil return orifice or screen may be plugged with debris or may become plugged shortly after a compressor failure. This will result in starvation of oil to the replacement compressor and a second failure.

Manifolded Compressor Replacement

Use care and the appropriate material handling equipment when lifting and moving compressors. Personal protective equipment must be used.

Should a compressor fail in a manifolded set, only the failed compressor should be replaced and not both compressors. The oil from the failed compressor will stay mostly in the failed compressor. Any contaminated oil that does enter the tandem circuit will be cleaned by the liquid line filter drier, and when used, the suction line filter drier.

The suction and discharge manifolds can be reused if the failed compressor is carefully removed, and the manifolds are cut in such a way that a coupling and short piece of copper can reconnect the new compressor. Reference the AE4-1430 Compressor Multiples Bulletin for more information on installing a new oil equalization line.

Start-Up of a New or Replacement Compressor

It is good service practice, when charging a system with a scroll compressor, to charge liquid refrigerant into the high side only. It is not good practice to dump liquid refrigerant from a refrigerant cylinder into the crankcase of a stationary compressor. If additional charge is required, charge liquid into the low side of the system with the compressor operating.

AWARNING

Follow the unit manufacturer's guidelines for properly evacuating and charging of the system. Do not start the compressor while the system is in a vacuum. Internal arcing may occur when any type of compressor is started in a vacuum which may result in terminal venting.

Do not operate the compressor without enough system charge to maintain at least 55 psig (3.8 bar) suction pressure. Do not operate with a restricted suction or liquid line. Do not operate with the low pressure cut-out disabled.

Allowing suction pressure to drop below 55 psig (3.8 bar) for more than a few seconds may overheat the scrolls and cause early drive bearing damage. Never install a system in the field and leave it unattended with no charge, a holding charge, or with the service valves closed without securely locking out the system. This will prevent unauthorized personnel from accidentally ruining the compressor by operating with no refrigerant flow.

Refrigerant Retrofits

Only use approved refrigerants, lubricants, and parts in accordance with the system and compressor specifications. Recover all the refrigerant from the system including the high and low side. Use a tubing cutter to remove the compressor.

These compressors are UL recognized and use with any other refrigerant than originally intended for use will void the compressor UL recognition.

For a list of Emerson approved refrigerants please refer to Form 93-11, Refrigerants and Lubricants Approved for Use in Copeland Compressors.

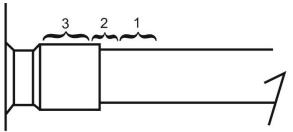


Figure 2 - Scroll Tube Fitting Brazing

New Installations

- The copper-coated steel tube fitting on scroll compressors can be brazed in approximately the same manner as any copper tube.
- Recommended brazing materials: Any silfos material is recommended, preferably with a minimum of 5% silver. However, 0% silver is acceptable.
- Be sure suction tube fitting I.D. and suction tube O.D. are clean prior to assembly. If oil film is present wipe with denatured alcohol, Dichloro-Trifluoroethane or other suitable solvent.
- Using a double-tipped torch apply heat in Area 1. As tube approaches brazing temperature, move torch flame to Area 2.
- Heat Area 2 until braze temperature is attained, moving torch up and down and rotating around tube as necessary to heat tube evenly. Add braze material to the joint while moving torch around joint to flow braze material around circumference.
- After braze material flows around joint, move torch to heat Area 3. This will draw the braze material down into the joint. The time spent heating Area 3 should be minimal.
- As with any brazed joint, overheating may be detrimental to the result.

Field Service

Remove refrigerant charge from both the low and high side of the compressor before cutting the suction and discharge lines to remove the compressor. Verify the charge has been completely removed with manifold gauges.

- To disconnect: Reclaim refrigerant from both the high and low side of the system. Cut tubing near compressor. The compressor should be disconnected using a tubing cutter.
- · To reconnect:
 - ✓ Recommended brazing materials: Silfos with minimum 5% silver or silver braze material with flux.
 - ✓ Insert tubing stubs into fitting and connect to the system with tubing connectors.
 - ✓ Follow New Installation brazing instructions above.

Figure 3 - YA YP Scroll Nomenclature

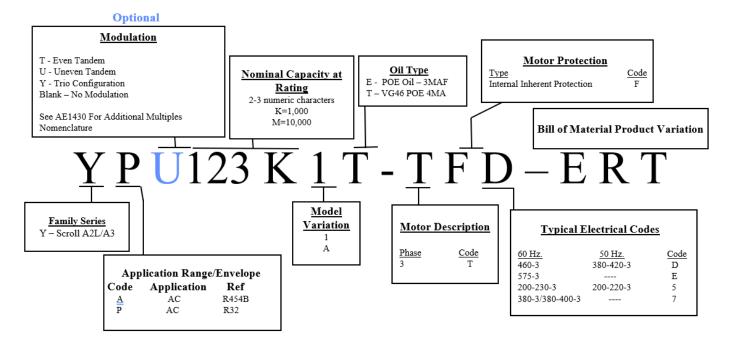
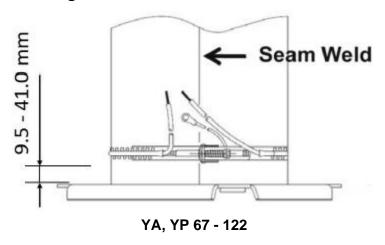



Figure 4 - Crankcase Heater Location

YP 137 -182

Connect the heater so the connection point straddles the compressor weld seam

Figure 5 - Operating Envelope YA67K1 - YA91K1

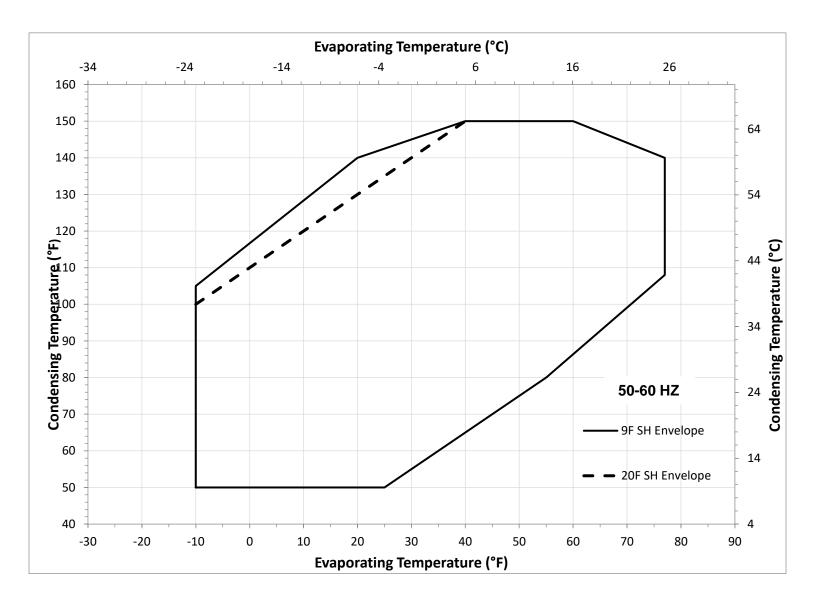


Figure 6 - Operating Envelope YA104K1, YA122K1

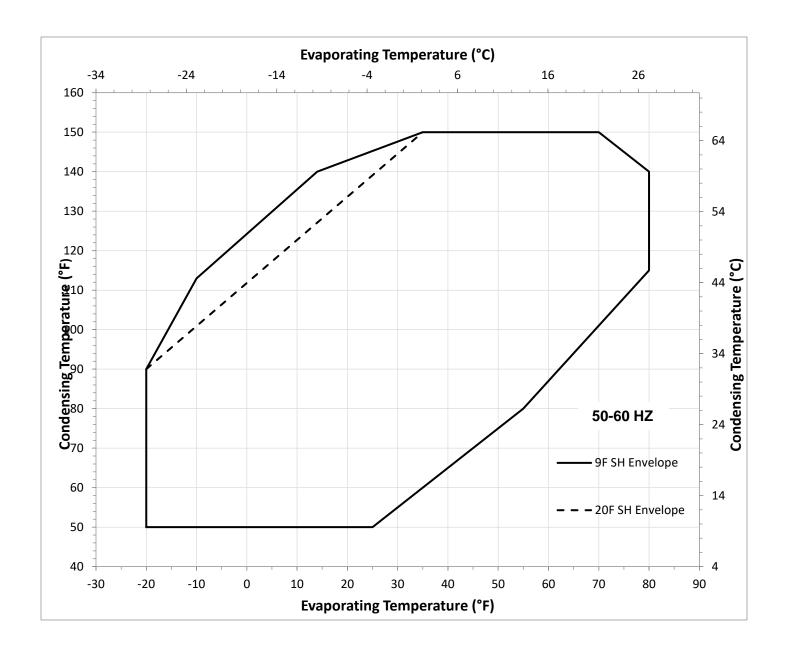


Figure 7 - Operating Envelope YA137K1 - YA182K1

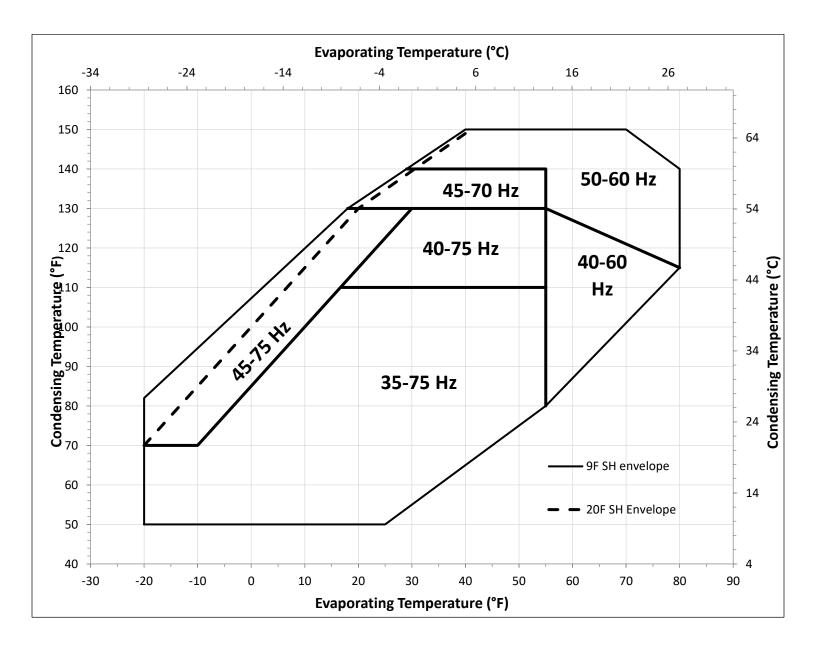


Figure 8 - Operating Envelope YP137K1 - YP182K1

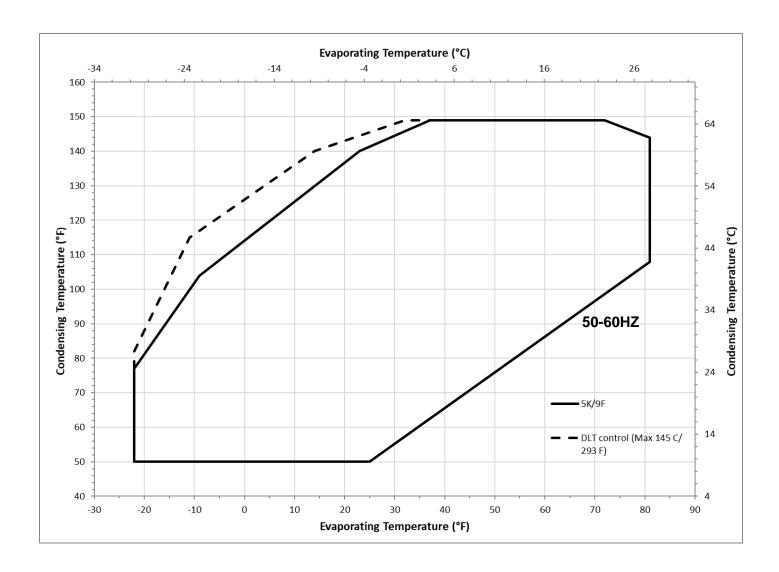


Figure 9 - Operating Envelope YP72K1 - YP97K1

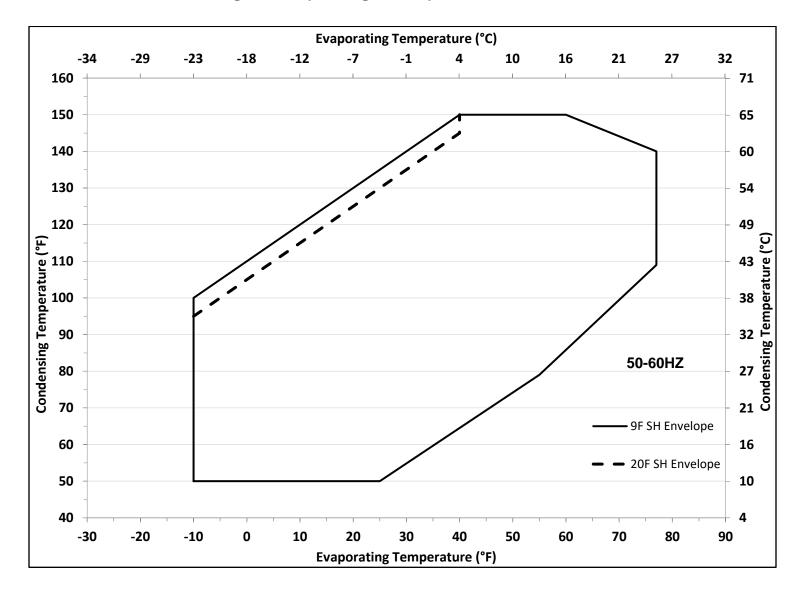


Figure 10 - Operating Envelope YP105K1, YP123K1

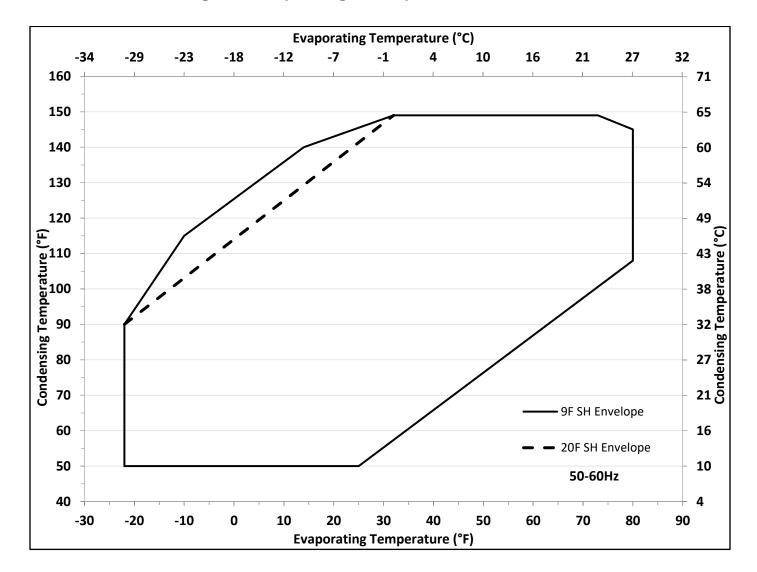
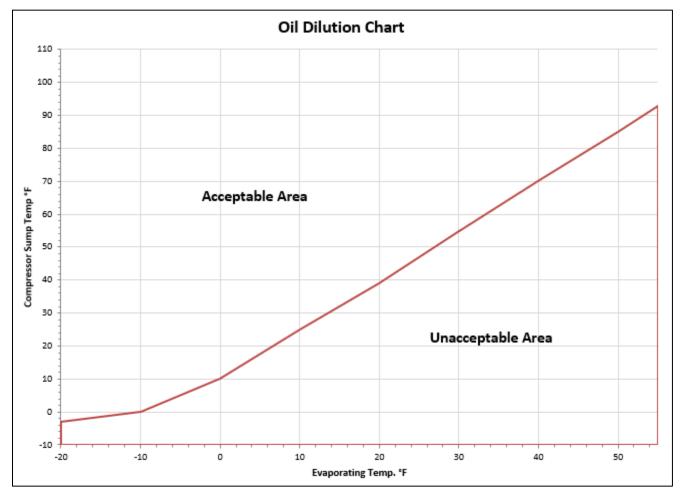



Figure 11

Table 1- Product Features

Model	IPR	ASTP	Shutdown	Discharge	Motor	POE Oil cSt
Iviouei IPK	ASTP	Device	Check Valve	Overload	POE OII CSL	
YA67, 76, 83, 91	N	Υ	Fluid Brake	Υ	Internal	32 cSt
YA104, 122	N	Υ	Fluid Brake	Υ	Internal	32 cSt
YA137, 154, 182	N	Υ	Floating Seal	Υ	Internal	32 cSt
YP72, 81, 89, 97	N	Υ	Fluid Brake	Υ	Internal	46 cSt
YP105, 123	N	N	Fluid Brake	Υ	Internal	46 cSt
YP137, 154, 182	N	N	Floating Seal	Υ	Internal	46 cSt

Model	IPR	ASTP	Shutdown Device	Discharge Check Valve	Motor Overload	POE Oil cSt
YA67, 76, 83, 91	N	Υ	Fluid Brake	Υ	Internal	32 cSt
YA104, 122	N	Υ	Fluid Brake	Υ	Internal	32 cSt
YA137, 154, 182	N	Υ	Floating Seal	Υ	Internal	32 cSt
YP72, 81, 89, 97	N	Υ	Fluid Brake	γ	Internal	46 cSt
YP105, 123	N	N	Fluid Brake	Y	Internal	46 cSt
YP137, 154, 182	N	N	Floating Seal	Υ	Internal	46 cSt

Table 2 - Torque Values

	Torque		
Part	ft-lb	in-lb	N-m
1-1/4" Sight Glass On Compressor	34-39	405-475	45.8-53.6
1-3/4" Rotalock Valve	125-133	1500-1590	170-180
1-1/4" Rotalock Valve	74-81	885-975	100-110
1" Rotalock Valve	50-57	600-690	68-78
Schrader Valve	3.3-5.0	40-60	4.5-6.8
Terminal Block Screws	1.0-1.3	12-15	1.4-1.7
Oil Access Fitting (Threads Into Oil Rotalock)	16.7-18.3	200-220	22.6-24.9
Crankcase Heater	1.7-2.1	20-25	2.3-2.8
M8 Terminal Box Mounting Stud Nuts	3.5-3.9	42-47	4.7-5.3

Table 3 - Refrigerant Charge Limits

	Cha	Charge Limit		
Model	lbs	kg		
YA67K – YA91K	10	4.5		
YA104K & YA122	11	5.0		
YA137K	16	7.2		
YA154K & YA182K	18	8.2		

	Charge Limit		
Model	lbs	kg	
YP72,81, 89, 97	10	4.5	
YP105K & YP123K	11	5.0	
YP137K	16	7.2	
YP154K & YP182K	18	8.2	

The contents of this publication are presented for informational purposes only and are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. Emerson Climate Technologies, Inc. and/or its affiliates (collectively "Emerson"), as applicable, reserve the right to modify the design or specifications of such products at any time without notice. Emerson does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson product remains solely with the purchaser or end user.