

IPRC208D - IPRC215D IPRC315D - VTIPR rel.6.4

INDEX

11 APPLICATIONS 7 12 HARDWARE ARCHITECTURE 7 13 IPRC215D AND IPRC315D 6 14 IPRC208D 15 15 PROBE CONNECTIONS - IPRC215D/IPRC315D AND IPRC208D 16 16 CONNECTION OF THE DIGITAL INPUTS 22 17 CONNECTION AALO OUTPUTS 22 18 IPX215D 24 10 IPX206D 31 111 TECHNICAL SPECIFICATIONS 32 112 VISOTOUCH CONNECTIONIS 36 113 TECHNICAL SPECIFICATIONS 36 114 TECHNICAL SPECIFICATIONS 36 115 VISOTOUCH CONNECT THE IPRORACK TO A PC 39 116 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 33 117 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 118 TECHNICAL SPECIFICATIONS 36 119 LIPKART / ETHERNET CONNECTION (LOCAL AREA NETWORK) 42 110 INFORMET / ETHERNET CONNECTION (LOCAL AREA NETWORK) 42 1117 DIRECT CONNECTION (LOCAL AREA NETWORK) 42 1111	1	GENERAL SPECIFICATIONS	7
12 HARDWARE ARCHITECTURE 7 11 IPRC216D AND IPRC315D 6 14 IPRC208D 16 15 PROBE CONNECTIONS – IPRC215D/IPRC315D AND IPRC208D 16 16 CONNECTION OF THE DIGITAL INPUTS 21 17 CONNECTION OF THE DIGITAL INPUTS 21 17 CONNECTION OF THE DIGITAL INPUTS 22 19 TECHNICAL SPECIFICATIONS 33 110 IFX20FD 33 111 TECHNICAL SPECIFICATIONS 34 112 VISOTOUCH CONNECTIONS 37 21 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 22.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 23.1 DIRECT CONNECTION (LOCAL AREA NETWORK) 42 34.11 WINT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 44.1 WINAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 44.1 WINAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 45.1 VENCTOWARDING 47 46.1 PARAMETER 46 47.2 SERVIVICE 44 48.3 </td <td>1.1</td> <td>APPLICATIONS</td> <td>7</td>	1.1	APPLICATIONS	7
13 IPRC215D AND IPRC315D 15 14 IPRC208D 15 15 PROBE CONNECTIONS – IPRC215D/IPRC315D AND IPRC208D 16 16 CONNECTION OF THE DIGTAL INPUTS 21 17 CONNECTION AAALOG OUTPUTS 22 18 IPX215D 23 19 TECHNICAL SPECIFICATIONS 24 110 IPX205D 31 111 TECINICAL SPECIFICATIONS 36 112 VISOTOUCH CONNECTIONS 36 2 SYSTEM CONFIGURATION 37 2.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 2.2 EXPANSIONS AND DRIVERS – WIRING 36 3.1 DIRECT CONNECTION (LOCAL AREA NETWORK) 42 3.1 DIRECT CONNECTION (LOCAL AREA NETWORK) 42 3.2 INTRAFT É THERNET CONNECTION (LOCAL AREA NETWORK) 42 3.3 PORT FORWARDING 42 4 VISOTOUCH VTIPR 44 4.1 WANT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.3 GENERAL MENU	1.2	HARDWARE ARCHITECTURE	7
14 IPRC208D 15 15 PROBE CONNECTION OF THE DIGITAL INPUTS 21 16 CONNECTION OF THE DIGITAL INPUTS 21 17 CONNECTION OF THE DIGITAL INPUTS 22 17 CONNECTION OF THE DIGITAL INPUTS 22 17 CONNECTION OF THE DIGITAL INPUTS 22 19 TECHNICAL SPECIFICATIONS 24 10 IPX205D 31 111 TECHNICAL SPECIFICATIONS 34 112 VISOTOUCH CONNECTIONS 34 112 VISOTOUCH CONNECTIONS 37 113 DIRECT CONNECTION (ENTHE IPRORACK TO A PC 39 114 CANBUS ADD RIVERS - WIRING 37 115 DIRECT CONNECTION (LOCAL AREA NETWORK) 42 116 DIRECT CONNECTION (LOCAL AREA NETWORK) 43 117 VISOTOUCH VTIPR 44 118 VISOTOUCH VTIPR 44 119 VISOTOUCH VTIPR 44 110 VISOTOUCH VTIPR 44 111 VISOTOUCH VTIPR 44	1.3	IPRC215D AND IPRC315D	8
15 PROBE CONNECTION S - IPRC215D/IPRC315D AND IPRC208D 12 16 CONNECTION OF THE DIGITAL INPUTS 22 17 CONNECTION OF THE DIGITAL INPUTS 22 18 IPX215D 24 17 TECHNICAL SPECIFICATIONS 24 17 TECHNICAL SPECIFICATIONS 24 111 TECHNICAL SPECIFICATIONS 33 112 VISOTOUCH CONNECTIONS 37 2 EXPANSIONS AND DRIVERS 37 2.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 2.2 EXPANSIONS AND DRIVERS - WINING 36 3.1 DIRECT CONNECT THE IPRORACK TO A PC 39 3.1 DIRECT CONNECT THE IPRORACK TO A PC 39 3.1 DIRECT CONNECT THE IPRORACK TO A PC 39 3.1 DIRECT CONNECT ON (LOCAL AREA NETWORK) 42 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1	1.4	IPRC208D	15
16 CONNECTION OF THE DIGITAL INPUTS 21 17 CONNECTING ANALOG OUTPUTS 22 18 TECHNICAL SPECIFICATIONS 24 19 TECHNICAL SPECIFICATIONS 24 10 IPX206D 31 111 TECHNICAL SPECIFICATIONS 34 112 VISOTOUCH CONNECTIONS 36 2 SYSTEM CONFIGURATION 37 111 TECHNICAL SPECIFICATIONS 34 111 TECHNICAL SPECIFICATIONS 36 2 SYSTEM CONFIGURATION 37 111 TECHNICAL SPECIFICATIONS 37 2 EXPANSIONS AND DRIVERS 37 21 CAINBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 22 EXPANSIONS AND DRIVERS – WIRING 36 31 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 39 32 INTRANET / ETHEINER 44 41 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 42 MAIN SCREEN VISUALIZATION 45 43 GENERAL MENU 47 44 MAIN SCREEN VISUALIZATION 46 <	1.5	PROBE CONNECTIONS – IPRC215D/IPRC315D AND IPRC208D	18
17 CONNECTING ANALOG OUTPUTS 22 18 IPX215D 22 19 TECHNICAL SPECIFICATIONS 22 110 IPX215D 33 111 TECHNICAL SPECIFICATIONS 34 112 VISOTOUCH CONNECTIONS 36 2 SYSTEM CONFIGURATION 37 2.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 2.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 2.2 EXPANSIONS AND DRIVERS – WIRING 36 31 DIRECT CONNECTT THE IPRORACK TO A PC 39 31 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 33 32 PORT FORWARDING 43 4 VISOTOUCH VTIPR 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.2 MAIN SCREEN VISUALIZATION 45 4.3 GENERAL MENU 47 4.5	1.6	CONNECTION OF THE DIGITAL INPUTS	21
18 IPX215D 22 19 TECHNICAL SPECIFICATIONS 22 110 IPX206D 31 111 TECHNICAL SPECIFICATIONS 34 111 TECHNICAL SPECIFICATIONS 34 111 TECHNICAL SPECIFICATIONS 34 111 TECHNICAL SPECIFICATIONS 34 21 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 21 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 22 EXPANSIONS AND DRIVERS – WIRING 32 31 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 39 32 INTRANET / ETHERNET CONNECTION (LOCAL ÁREA NETWORK) 42 33 PORT FORWARDING 42 44 VISOTOUCH VTIPR 44 47 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 48 SCHEEN VISUALIZATION 45 49 VALVE OVERVENTIDE 44 41 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 41 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 42 MAIN SCHEEN YIGUALZATION 45 43<	1.7	CONNECTING ANALOG OUTPUTS	22
19 TECHNICAL SPECIFICATIONS 23 110 IPX206D 31 111 TECHNICAL SPECIFICATIONS 34 111 TECHNICAL SPECIFICATIONS 34 111 TECHNICAL SPECIFICATIONS 34 112 VISOTOUCH CONNECTIONS 37 21 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 22 EXPANSIONS AND DRIVERS - WIRING 36 31 DIRECT CONNECTT THE IPRORACK TO A PC 39 31 DIRECT CONNECTTINE (BETWEEN IPRO AND PC WITH A CABLE) 33 33 PORT FORWARDING 42 44 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 41 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 42 MAIN SCREEN VISUALIZATION 45 43 GENERAL MENU 47 44 SCHEMALIC 47 45 SERVICE 44 46 PARAMETER 46 47 PARAMETER 45 48 SCOLER 52 41 </td <td>1.8</td> <td>IPX215D</td> <td>24</td>	1.8	IPX215D	24
110 IPX206D 31 111 Technical specifications 34 112 Visotouch Connections 36 2 SYSTEM CONFIGURATION 37 1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 2 EXPANSIONS AND DRIVERS - Wiring 38 3 HOW TO CONNECT THE IPRORACK TO A PC 39 3.1 Direct connection (Between IPRO AND PC with a cable) 32 3.2 INTRANET / Etherinet connection (Local Area Network) 42 3.3 Port forwarbing 43 4 VISOTOUCH VTIPR 44 4.1 What is Displayed when the KeyBoard is Connected 44 4.1 What is Displayed when the KeyBoard is Connected 44 4.1 What is Displayed when the KeyBoard is Connected 44 5.2 Kinteren Visualization 45 4.3 GENERAL MENU 47 5.4 SERVICE 46 6 PARAMETER 46 7 PARAMETER EVEL 1 52 4.1 COMPRESSOR PAGE 52 4.11 COMPRESSOR PAGE <td< td=""><td>1.9</td><td>TECHNICAL SPECIFICATIONS</td><td>28</td></td<>	1.9	TECHNICAL SPECIFICATIONS	28
1.11 TECHNICAL SPECIFICATIONS 34 1.12 VISOTOUCH CONNECTIONS 36 2 SYSTEM CONFIGURATION 37 2.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 2.2 EXPANSIONS AND DRIVERS - WIRING 38 3 HOW TO CONNECT THE IPRORACK TO A PC 39 3.1 Direct connection (settween IPRO AND PC with a CABLE) 32 3.1 Direct connection (settween IPRO AND PC with a CABLE) 32 3.1 Direct connection (settween IPRO AND PC with a CABLE) 32 3.3 PORT FORWARDING 44 4 What is DISPLAYED when the KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED when the KEYBOARD IS CONNECTED 44 4.2 Main SCREEN VISUALIZATION 45 4.3 GENERAL MENU 47 4.4 CAMAMETRE 44 4.4 MAIN SCREEN VISUALIZATION 46 4.5 CHEMATIC 47 4.6 PARAMETER 48 4.7 PARAMETER 48 4.8 </td <td>1.10</td> <td>IPX206D</td> <td>31</td>	1.10	IPX206D	31
1.12 VISOTOUCH CONNECTIONS 36 2 SYSTEM CONFIGURATION 37 2.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 2.2 EXPANSIONS AND DRIVERS - WIRING 38 3 HOW TO CONNECT THE IPRORACK TO A PC 39 3.1 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 33 3.2 INTRANET / ETHERNET CONNECTION (LOCAL AREA NETWORK) 42 3.3 PORT FORWARDING 43 4 VISOTOUCH VTIPR 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.3 GENERAL MENU 47 4.4 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.4 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.4 MAIN SCHEEN YISULIZATION 45 4.5 SERVICE 45	1.11	TECHNICAL SPECIFICATIONS	34
SYSTEM CONFIGURATION 37 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 EXPANSIONS AND DRIVERS – WIRING 38 HOW TO CONNECT THE IPRORACK TO A PC 39 Intranet / Ethernet convection (Between IPRO and PC with a cable) 38 VISOTOUCH VTIPR 44 What is Displayed when the keyboard is convected 44 Main scheren visualization 45 GENERAL MENU 47 SCHEMATIC 47 SCOULER 52 VALVE OVERRIDE 52 VALVE OVERRIDE 52 VALVE OVERRIDE 53 VALVE OVERRIDE 54 VALVE OVERRIDE 55 VALVE OVERRIDE 56 <td>1.12</td> <td>VISOTOUCH CONNECTIONS</td> <td>36</td>	1.12	VISOTOUCH CONNECTIONS	36
2.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS 37 2.2 EXPANSIONS AND DRIVERS – WIRING 38 3.1 DIRECT CONNECTT THE IPRORACK TO A PC 39 3.1 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 38 3.2 INTRANET / ETHERNET CONNECTION (LOCAL AREA NETWORK) 42 3.3 PORT FORWARDING 43 4 VISOTOUCH VTIPR 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.3 GENERAL MENU 47 4.4 SCHEM VISUALIZATION 45 4.5 GENERAL MENU 47 4.6 PARAMETER 46 4.7 PARAMETER LEVEL 1 52 4.8 GASCOOLER 52 4.10 COMPRESSOR PAGE 52 4.11 COMPRESSOR PAGE 52 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DESUPERHEATER 1 56 4.16 PARAMETER LEVEL 1 56 4.10 DN-OFF 54 </td <td>2</td> <td>SYSTEM CONFIGURATION</td> <td>37</td>	2	SYSTEM CONFIGURATION	37
Instruction Status Status <thstatus< th=""> <thstatus< th=""> <thstatu< td=""><td><u>=</u> 21</td><td>CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS</td><td>37</td></thstatu<></thstatus<></thstatus<>	<u>=</u> 21	CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS	37
HOW TO CONNECT THE IPRORACK TO A PC 39 11 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 35 21 INTRANET / ETHERNET CONNECTION (LOCAL AREA NETWORK) 42 3.3 PORT FORWARDING 43 4 VISOTOUCH VTIPR 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.3 GENERAL MENU 47 4.4 MAIN SCREEN VISUALIZATION 47 4.5 SERVICE 48 4.6 PARAMETER 49 4.7 SARAMETER LEVEL 1 55 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 OALARM PAGES 52 4.11	2.2	EXPANSIONS AND DRIVERS – Wiring	38
HOW TO CONNECT THE IPRORACK TO A PC 39 3.1 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 35 3.1 DIRECT CONNECTION (BETWEEN IPRO AND PC WITH A CABLE) 35 3.3 PORT FORWARDING 42 4 WISOTOUCH VTIPR 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.3 GENERAL MENU 47 4.4 SCHEMATIC 47 4.5 SERVICE 48 4.6 PARAMETER 49 4.6 PARAMETER 42 4.7 PARAMETER 52 4.10 COMPRESSOR PAGE 52 4.11 COMPRESSOR PAGE 52 4.12 PASSWORD 54 4.13 ON-OFF 54 <	•		
JINED FORMED FOR DETINET CONNECTION (LOCAL AREA NETWORK) 42 INTRANET / ETHERNET CONNECTION (LOCAL AREA NETWORK) 43 PORT FORWARDING 43 VISOT OUCH VTIPR 44 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 1. WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.2 MAIN SCREEN VISUALIZATION 45 4.3 GENERAL MENU 47 4.4 SCHEMATIC 47 4.5 SERVICE 48 4.6 PARAMETER 48 4.7 PARAMETER LEVEL 1 52 4.8 GASCOOLER 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 56 4.16 HEAT RECLAIM 1 (PAGE X) 56 4.17 COMPRESSORS DETAILS (EXAMPLE) 58 4.18 INFORMATION PAGE 56 4.19 CAPACITY PAGE 56 4.20 LOG FILE PAGE 56	<u>3</u>		39
AL INTERNET / CONVECTION (EDUCL AREA NETWORK) 42 A VISOTOUCH VTIPR 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.2 MAIN SCREEN VISUALIZATION 45 3.6 GENERAL MENU 47 4.3 SCHEMATIC 47 4.4 SCHEMATIC 47 4.5 SERVICE 48 6 PARAMETER LEVEL 1 50 4.6 PARAMETER LEVEL 1 50 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 56 4.16 HEAT RECLAIM 1 (PAGE X) 56 4.17 COMPRESSORS DETAILS (EXAMPLE) 56 4.18 INFORMATION PAGE 56 4.19	2.1	INTRANET / ETHERNET CONNECTION (LOCAL AREA NETWORK)	40
4 VISOTOUCH VTIPR 44 4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.2 MAIN SCREEN VISUALIZATION 45 4.3 GENERAL MENU 47 4.4 SCHEMATIC 47 4.5 SERVICE 48 4.6 PARAMETER 49 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 JO PAGE 55 4.15 DE-SUPERHEATER 1 56 4.16 HEAT RECLAIM 1 (PAGE X) 56 4.17 COMPRESSORS SORS DETAILS (EXAMPLE) 58 4.18 INFORMATION PAGE 56 4.19 CORPRESSORS DETAILS (EXAMPLE) 58 4.10 CORPRESSORS DETAILS (EXAMPLE) 58 4.20	∠ ব ব	PORT EODWARDING	42
4 VISOTOUCH VTIPR 44 4.1 What is DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.2 MAIN SCREEN VISUALIZATION 45 4.3 GENERAL MENU 47 4.4 SCHEMATIC 47 4.5 SERVICE 48 4.6 PARAMETER 49 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 58 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 52 4.20 COR FILE PAGE 52 4.21 UNG SCRS DETAILS (EXAMPLE)	5.5	FORTFORWARDING	45
4.1 WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED 44 4.2 MAIN SCREEN VISUALIZATION 45 4.3 GENERAL MENU 47 4.4 SCHEMATIC 47 4.5 SERVICE 48 4.6 PARAMETER 49 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 62 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE SETUP 63 4.23 CORE SENSE SETUP 63	4	VISOTOUCH VTIPR	44
4.2 MAIN SCREEN VISUALIZATION 45 4.3 GENERAL MENU 47 4.4 SCHEMATIC 47 4.4 SCHEMATIC 48 4.5 SERVICE 48 4.6 PARAMETER 49 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 53 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 58 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 62 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE SETUP 63 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF FILE M	4.1	WHAT IS DISPLAYED WHEN THE KEYBOARD IS CONNECTED	44
4.3 GENERAL MENU 47 4.4 SCHEMATIC 47 4.5 SERVICE 48 4.6 PARAMETER 49 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 59 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF IP & MODBUS ADDRESS 64 4.26 <	4.2	MAIN SCREEN VISUALIZATION	45
4.4 SCHEMATIC 47 4.5 SERVICE 48 4.6 PARAMETER 49 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 58 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 59 4.21 SUPERHEATE PAGE 60 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF IP & MODBUS ADDRESS 64 4.26 CONF FILE MANAGEMENT 64 4.27 <td>4.3</td> <td>GENERAL MENU</td> <td>47</td>	4.3	GENERAL MENU	47
4.5 SERVICE 48 4.6 PARAMETER 49 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF IP & MOBUS ADDRESS 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 <t< td=""><td>4.4</td><td>SCHEMATIC</td><td>47</td></t<>	4.4	SCHEMATIC	47
4.6 PARAMETER 49 4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF IP & MODBUS ADDRESS 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65	4.5	SERVICE	48
4.7 PARAMETER LEVEL 1 50 4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF FILE MANAGEMENT 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65 4.29 ENERGY SAVING 66	4.6	PARAMETER	49
4.8 GASCOOLER 52 4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF IP & MODBUS ADDRESS 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65 4.29 ENERGY SAVING 66	4.7	PARAMETER LEVEL 1	50
4.9 VALVE OVERRIDE 52 4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.10 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF IP & MOBUS ADDRESS 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65 4.29 ENERGY SAVING 66 4.30 COOLING CONTROL 66 4.31 SET POINTS 67 </td <td>4.8</td> <td>GASCOOLER</td> <td>52</td>	4.8	GASCOOLER	52
4.10 ALARM PAGES 52 4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.14 I/O PAGE 56 4.15 DE-SUPERHEATER 1 56 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 58 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF FILE MANAGEMENT 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 66 4.29 ENERGY SAVING 66 4.30 COOLING CONTROL 66	4.9	VALVE OVERRIDE	52
4.11 COMPRESSOR PAGE 53 4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 58 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.10 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 60 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF FILE MANAGEMENT 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 66 4.29 ENERGY SAVING 66 4.30 COOLING CONTROL 66 4.31 SET POINTS 67	4.10	ALARM PAGES	52
4.12 PASSWORD 54 4.13 ON-OFF 54 4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF FILE MANAGEMENT 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65 4.29 ENERGY SAVING 66 4.30 COOLING CONTROL 66 4.31 SET POINTS 67	4.11	COMPRESSOR PAGE	53
4.13 ON-OFF 54 4.14 I/O Page 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF IP & MODBUS ADDRESS 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65 4.29 ENERGY SAVING 66 4.30 COOLING CONTROL 66 4.31 SET POINTS 67	4.12	PASSWORD	54
4.14 I/O PAGE 55 4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.10 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF IP & MODBUS ADDRESS 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65 4.29 ENERGY SAVING 66 4.30 COOLING CONTROL 66 4.31 SET POINTS 67	4.13	ON-OFF	54
4.15 DE-SUPERHEATER 1 58 4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65 4.29 ENERGY SAVING 66 4.30 COOLING CONTROL 66 4.31 SET POINTS 67	4.14	I/O PAGE	55
4.16 HEAT RECLAIM 1 (PAGE X) 58 4.17 COMPRESSORS DETAILS (EXAMPLE) 59 4.18 INFORMATION PAGE 59 4.19 CAPACITY PAGE 59 4.20 LOG FILE PAGE 60 4.21 SUPERHEAT PAGE 62 4.22 CORE SENSE INFORMATION 62 4.23 CORE SENSE SETUP 63 4.24 REAL TIME CLOCK 63 4.25 CONF FILE MANAGEMENT 64 4.26 CONF FILE MANAGEMENT 64 4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 65 4.29 ENERGY SAVING 66 4.20 COOLING CONTROL 66 4.31 SET POINTS 67	4.15	DE-SUPERHEATER 1	58
4.17COMPRESSORS DETAILS (EXAMPLE)594.18INFORMATION PAGE594.19CAPACITY PAGE594.20LOG FILE PAGE604.21SUPERHEAT PAGE624.22CORE SENSE INFORMATION624.23CORE SENSE SETUP634.24REAL TIME CLOCK634.25CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.16	HEAT RECLAIM 1 (PAGE X)	58
4.18INFORMATION PAGE594.19CAPACITY PAGE594.20LOG FILE PAGE604.21SUPERHEAT PAGE624.22CORE SENSE INFORMATION624.23CORE SENSE SETUP634.24REAL TIME CLOCK634.25CONF IP & MODBUS ADDRESS644.26CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.17	COMPRESSORS DETAILS (EXAMPLE)	59
4.19CAPACITY PAGE594.20LOG FILE PAGE604.21SUPERHEAT PAGE624.22CORE SENSE INFORMATION624.23CORE SENSE SETUP634.24REAL TIME CLOCK634.25CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.18	INFORMATION PAGE	59
4.20LOG FILE PAGE604.21SUPERHEAT PAGE624.22CORE SENSE INFORMATION624.23CORE SENSE SETUP634.24REAL TIME CLOCK634.25CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.19	CAPACITY PAGE	59
4.21SUPERHEAT PAGE624.22CORE SENSE INFORMATION624.23CORE SENSE SETUP634.24REAL TIME CLOCK634.25CONF FILE MANAGEMENT644.26CONF FILE MANAGEMENT654.28DEVICE STATUS654.29ENERGY METER STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.20	LOG FILE PAGE	60
4.22CORE SENSE INFORMATION624.23CORE SENSE SETUP634.24REAL TIME CLOCK634.25CONF IP & MODBUS ADDRESS644.26CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.21	SUPERHEAT PAGE	62
4.23CORE SENSE SETUP634.24REAL TIME CLOCK634.25CONF IP & MODBUS ADDRESS644.26CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.22	CORE SENSE INFORMATION	62
4.24REAL TIME CLOCK634.25CONF IP & MODBUS ADDRESS644.26CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.23	CORE SENSE SETUP	63
4.25CONF IP & MODBUS ADDRESS644.26CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.24	REAL TIME CLOCK	63
4.26CONF FILE MANAGEMENT644.27ENERGY METER STATUS654.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.25	CONF IP & MODBUS ADDRESS	64
4.27 ENERGY METER STATUS 65 4.28 DEVICE STATUS 66 4.29 ENERGY SAVING 66 4.30 COOLING CONTROL 66 4.31 SET POINTS 67	4.26	CONF FILE MANAGEMENT	64
4.28DEVICE STATUS664.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.27	ENERGY METER STATUS	65
4.29ENERGY SAVING664.30COOLING CONTROL664.31SET POINTS67	4.28	DEVICE STATUS	66
4.30 COOLING CONTROL 66 4.31 SET POINTS 67	4.29	ENERGY SAVING	66
4.31 SET POINTS 67	4.30	COOLING CONTROL	66
	4.31	SET POINTS	67

5.1 PARAMETERS FOR IPRORACK I/O CONFIGURATION 6 PARAMETERS 7 REGULATION 7.1 NEUTRAL ZONE ADJUSTMENT – ONLY FOR COMPRESSORS 7.2 PROPORTIONAL BAND ADJUSTMENT – FOR COMPRESSORS AND FANS	68 95 155 155
6 PARAMETERS 7 REGULATION 7.1 NEUTRAL ZONE ADJUSTMENT - ONLY FOR COMPRESSORS 7.2 PROPORTIONAL BAND ADJUSTMENT - FOR COMPRESSORS AND FANS	95 155
7.1 REGULATION 7.1 Neutral zone Adjustment – ONLY FOR COMPRESSORS 7.2 PROPORTIONAL BAND Adjustment – FOR COMPRESSORS AND FANS	155 155
 7.1 NEUTRAL ZONE ADJUSTMENT – ONLY FOR COMPRESSORS 7.2 PROPORTIONAL BAND ADJUSTMENT – FOR COMPRESSORS AND FANS 	155 156
7.2 PROPORTIONAL BAND ADJUSTMENT – FOR COMPRESSORS AND FANS	156
	100
8 SCREW COMPRESSORS	157
8.1 REGULATION WITH SCREW COMPRESSORS LIKE BITZER/ HANBELL/ REFCOMP ETC	157
8.2 REGULATION WITH SCREW COMPRESSORS LIKE FRASCOLD	158
9 MIXED CAPACITY REGULATION	158
9.1 PARAMETER INVOLVED	158
9.2 REGULATION CONCEPT	159
9.3 INVERTER + MIXED CAPACITY COMPRESSORS	161
9.4 UNEVEN CAPACITY FOR PARALLEL COMPRESSOR	161
10 ANALOG OUTPUTS FOR INVERTER	162
10.1 VSD COMPRESSOR MANAGEMENT	162
10.2 DOUBLE INVERTER MANAGEMENT FOR CF1 = SPO	163
10.3 INVERTER BY-PASS	166
10.4 FANS MANAGEMENT WITH INVERTER – I FANS GROUP WITH INVERTER MODE, OTHERS ON IN ON/OFF MOD 10.5 MANAGEMENT OF ALL FANS WITH INVERTER – DRODODTIONAL INVERTER	JE 107 168
10.6 FAN PRE-START BEFORE FIRST COMPRESSOR ACTIVATION	169
11 FLASH TANK: LOW AND HIGH LIQUID LEVEL MANAGEMENT	170
12 ANALOG OUPUT FOR FAN MANAGEMENT AT REVERSE MOD) <u>E</u>
<u> </u>	
12.1 RESOURCES	171
12.2 Parameters	171
13 HOT GAS INJECTION VALVE MANAGEMENT	171
13.1 ACTIVATION TO INCREASE SUPERHEAT WITH LOW SUPERHEAT CONDITIONS	172
13.2 ACTIVATION TO INCREASE SUCTION TEMPERATURE WHEN IT IS TOO LOW	173
14 LIQUID INJECTION VALVE MANAGEMENT	174
14.1 ACTIVATION TO DECREASE SUPERHEAT WITH HIGH SUPERHEAT CONDITIONS	175
14.2 ACTIVATION TO DECREASE SUCTION TEMPERATURE WHEN IT IS TOO HIGH	176
14.3 ACTIVATION TO DECREASE DISCHARGE TEMPERATURE WHEN IT IS TOO HIGH	178
15 LOW TEMPERATURE/PRESSURE VALUE TO TURN OFF THE	
COMPRESSORS (ELECTRONIC LOW PRESSURE SWITCH).	180

<u>16</u>	HIGH PRESSURE ALARM IN GAS COOLER	180
17	ELASH TANK MANAGEMENT	180

17		100
17.1	HIGH PRESSURE IN FLASH TANK	180

17.2 17.3	LOW PRESSURE IN FLASH TANK FLASH TANK LIQUID LEVEL MONITORING	181 181
18	OFF FUNCTION	181
18.1 18.2	RELATION BETWEEN DIGITAL INPUT AND KEYBOARD OFF FUNCTION AND GAS COOLER VALVES	181 182
<u>19</u>	ENERGY SAVING FUNCTION	182
19.1	RELATION BETWEEN DIGITAL INPUT AND KEYBOARD	182
<u>20</u>	AUXILIARY RELAYS ACTIVATED BY DIGITAL INPUTS	183
20.1	PARAMETERS INVOLVED	183
20.2	ACTIVATION	183
20.3	Action	183
21	HVAC COOLING CONTROL	184
21.1	Resources	184
21.2	PARAMETERS	184
21.3		184
21.4	HVAC DEACTIVATION IN CASE OF HIGH EXTERNAL TEMPERATURE	186
<u>22</u>	HEAT RECLAIM FOR TRANSCRITICAL CO2 RACK	186
22.1	SINGLE HEAT RECLAIM WITHOUT PUMP	186
22.2	ADJUSTMENT HEAT RECLAIM 1 FOR CASE 1, 2, 3	189
22.3	SINGLE HEAT RECLAIM WITH GAS COOLER BY-PASS	193
22.4	PUMP REGULATION – THIS IS VALID FOR BOTH THE HIRS WHEN THE PUMP IS PRESENT	200
22.6	HEAT RECLAIM WITH 0-10V INPUT	200
22	PARALLEL COMPRESSION FOR TRANSCRITICAL CO2 RACK	203
<u>23</u> 23.1		203
23.1	PARAMETERS	203
23.3	CONFIGURATION	203
23.4	Adjustment	204
24	OIL MANAGEMENT	206
24 1	SOLUTION 1 OIL MANAGEMENT ACCORDING TO COMPRESSOR STATUS (OIL 1=1)	206
24.2	SOLUTION 2, OIL MANAGEMENT ACCORDING TO LOW LEVEL DIGITAL INPUT IN OIL SEPARATOR (OIL1=2)	208
(OIL1=	(3)	210
24.4	SOLUTION 4: OIL MANAGEMENT ACCORDING TO DIFFERENTIAL PRESSURE AND LOW LEVEL DIGITAL SWITCH	IN OIL
SEPARA	ator (OIL1=4)	212
24.5 DIGITAL	Solution 5: OIL management according to differential pressure and with high and low level . switches in OIL separator and low level switch in reservoir (OIL1=5)	214
0 5		045
25	DE-SUPERHEATER MANAGEMENT	215
25.1		215
20.2 25 3	INPUIS - OUTPUIS TABLE PADAMETERS	215
25.4	CONFIGURATION	216
25.5	ADJUSTMENT	216
26	ADIABATIC SPRAY FUNCTION	217
26.1		217
20. I		217

26.2 26.3 26.4	RESOURCES PARAMETERS REGULATION	217 218 218
<u>27</u> ONL	CORESENSE INTEGRATION – COMPATIBILITY GUARANTEE	220
27.1	CONNECTION	220
<u>28</u> 28.1	INFORMATION FROM THE CORESENSE Alarm management	222 223
<u>29</u>	CONNECTION BETWEEN XWEB- IPRORACK - CORENSENSE	224
<u>30</u>	ALARM LIST	225
30.1	ALARM CONDITIONS - SUMMARY TABLE	225

1 GENERAL SPECIFICATIONS

The Dixell programmable controllers are all powered at 24Vac/dc and use a high speed performance 32-bit microprocessor.

One of the features that distinguish the iPRO controllers is the vast range of connection options with external devices, Dixell as well as other brands. CANBus, RS485 Master and Slave, and an Ethernet and USB port provide maximum flexibility of integration with the outside world. ModBUS-RTU protocol, one of the most popular in the world, is used for serial communication.

Up to 80 MB of flash memory are entirely available to the user, according to the model. All the Outputs and outputs are fully configurable.

1.1 APPLICATIONS

The IPRORACK series are thought to manage both compressors and fans in a CO2 Transcritical a pack (in subcritical and transcritical mode)

The compressors can be simple, multistage or with inverters.

Control is done with neutral zone or proportional band and is based on the pressure or temperature sensed in the LP suction (compressors) and HP (condenser) circuits. A special algorithm balances the run hours of the compressors to distribute the work load uniformly.

The front panel offers complete information on the system's status by displaying the suction and condenser pressure (temperatures), the status of the loads, possible alarms or maintenance conditions.

Each load has up to 3 alarm Outputs that are able to stop it when activated. To guarantee the total system's safety, there are also two Outputs for low and high pressure switches.

The same applications can be downloaded in the various models available (obviously adapting the number of Outputs and outputs).

1.2 HARDWARE ARCHITECTURE

The iPRO programmable controller is structured as follows:

- 32-bit microprocessor used to run the application
- Bayonet connectors (Phoenix)
- The programme and parameters are stored in a permanent flash memory. No data is lost in case of power failure.
- Ethernet port.
- USB port.
- Connection to the dedicated remote LCD display.
- CANBus.
- RS485 Master.
- RS485 Slave.

1.3.1.1 IPRC215D

1.3.1.2 IPRC315D

1.3.2 Description of the connections

Connector	Description
1 2 3 4 5 6 7 8 -9 10 11 12 13 14 15 16	Connector for 24Vac/dc power supply Analogue inputs (Pb1 - Pb10, PbC) Additional power (+5Vdc, +12Vdc, GND)
21 22 23 24 25 26 27 28 29 30	Opto-insulated analogue outputs (Out1 - Out6, GND) IPRC215D: 24Vac/dc power supply for the opto-insulated analogue output
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	Potential free opto-insulated digital inputs (DI1 - DI20, DIC) Opto-insulated 24Vac/dc digital inputs (DI1 - DI20, GND)
	USB port for downloads (BIOS, ISaGRAF® application, maps of parameters, remote display applications, network configuration, website)
古古	TCP/IP Ethernet port
Remote Display Vnr + - 103 104 105	Connector for remote terminal (VISOGRAPH), maximum 2 terminals per iPRO.
	CANBUS connector for expansions (IPEXx0D) and drivers for electronic valves (XEVx0D Rx and Tx LED to indicate that communication is active. Line terminal (Term)
R5485 Slave - + gnd Term 97 98 99 ⊭ & ∎∎	RS485 Slave connector for connection to monitoring system. Rx and Tx LED to indicate that communication is active Closed circuit terminal (Term)
R5485 Master Term – + gnd ■ ■ ⊭ ሯ 94 95 96	RS485 Master connector for connection to Coresense Rx and Tx LED to indicate that communication is active Closed circuit terminal (Term)
70 71 72 73	IPRC215D: Digital relay outputs (for digital outputs with potential free contacts) 3 NO relays, 1 common
76 77 78 79 80 81	IPRC215D: Digital relay outputs (for digital outputs with potential free contacts) 5 NO relays, 1 common
84 85 86	IPRC215D: Digital relay outputs 2 NO relays, 1 common
87 88 89 90 91 92 93	IPRC215D: Digital relay outputs (only for 215D versions) 5 NO relays, 1 common and 1 potential free (Neutral)
70 71 72 73 74 75	IPRC315D: Digital relay outputs 4 NO relays, 2 common

Connector	Description
76 77 78 79 80 81 82 83	IPRC315D: Digital relay outputs (for digital outputs with live contacts) 5 NO relays, 1 common and 2 potential free (Neutral)
	IPRC315D: Digital relay outputs 3 NO relays, 2 common + 2 NO relays, 3 common
PWR ON	Green LED to indicate the presence of power
	Jumper to activate the RESCUE MODE
LEDI ALARM	Yellow status LEDs (LED1) and red LED (ALARM) See relative paragraph
An.Outs	Power supply INPUT for optoinsulated analogue outputs 24Vac/dc

1.3.3 Description of the inputs and outputs

Input No.	Type of Input	Description
1	Supply	Reference "-"/GND power (24Vac or 24Vdc)
2	Pb1	Configurable analogue input 1 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
3	Pb2	Configurable analogue input 2 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
4	Pb3	Configurable analogue input 3 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
5	Pb4	Configurable analogue input 4 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
6	Pb5	Configurable analogue input 5 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
7	PbC	Common analogue inputs (NTC, PTC, DI)
8	GND(-)	Additional power reference 5Vdc and 12Vdc and analogue inputs (0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V)
9	Supply	Reference "+" power supply (24Vac or 24Vdc)
10	Pb6	Configurable analogue input 6 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
11	Pb7	Configurable analogue input 7 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
12	Pb8	Configurable analogue input 8 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
13	Pb9	Configurable analogue input 9 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
14	Pb10	Configurable analogue input 10 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
15	+5V	Additional power +5Vdc

Input No.	Type of Input	Description
16	+12V	Additional power +12Vdc
21	Out1	Opto-insulated analogue output 1 0 - 10V
22	Out2	Opto-insulated analogue output 2 0 - 10V
23	Out3	Opto-insulated analogue output 3 0 - 10V
24	Out4	Opto-insulated analogue output 4 0 - 10V
25	GND(-)	Common opto-insulated analogue output
26	Out5	Analogue output 5 0 - 10V, 4 - 20mA, Opto-insulated relay
27	Out6	Analogue output 6 0 - 10V, 4 - 20mA, Opto-insulated relay
28	Supply	IPRC215D: Power for opto-insulated analogue outputs at 24Vac or 24Vdc(-) IPRC315D: not used
29	Supply	IPRC215D: Power for opto-insulated analogue outputs at 24Vac or 24Vdc(+) IPRC315D: not used
30	GND(-) +12V	IPRC215D:Common opto-insulated analogue output IPRC315D: + 12V not used
40	DI1	Opto-insulated digital input 1
41	DI2	Opto-insulated digital input 2
42	DI3	Opto-insulated digital input 3
43	DI4	Opto-insulated digital input 4
44	DI5	Opto-insulated digital input 5
45	DI6	Opto-insulated digital input 6
46	DI7	Opto-insulated digital input 7
47	DI8	Opto-insulated digital input 8
48	DI9	Opto-insulated digital input 9
49	DI10	Opto-insulated digital input 10
50	GND(-)	Reference "-" for opto-insulated digital inputs 1 to 20 (if inputs 24Vac or 24Vdc)
51	DI11	Opto-insulated digital input 11
52	DI12	Opto-insulated digital input 12
53	DI13	Opto-insulated digital input 13
54	DI14	Opto-insulated digital input 14
55	DI15	Opto-insulated digital input 15
56	DI16	Opto-insulated digital input 16
57	DI17	Opto-insulated digital input 17
58	DI18	Opto-insulated digital input 18

Input No.	Type of Input	Description	
59	DI19	Opto-insulated digital input 19	
60	DI20	Opto-insulated digital input 20	
61	IDC	Common opto-insulated digital inputs 1 to 20 (if potential free inputs)	
		IPRC215D* – Digital Outputs	
70*	RL1	Relay 1 normally open contact	
71*	С	Common relays 1, 2 and 3 (MAX 6A)	
72*	RL2	Relay 2 normally open contact	
73*	RL3	Relay 3 normally open contact	
76*	RL4	Relay 4 normally open contact	
77*	RL5	Relay 5 normally open contact	
78*	RL6	Relay 6 normally open contact	
79*	RL7	Relay 7 normally open contact	
80*	С	Common relays 4, 5, 6, 7 and 8 (MAX 6A)	
81*	RL8	Relay 8 normally open contact	
84*	RL9	Relay 9 normally open contact	
85*	RL10	Relay 10 normally open contact	
86*	С	Common relays 9 and 10 (MAX 6A)	
87*	RL11	Relay 11 normally open contact	
88*	RL12	Relay 12 normally open contact	
89*	RL13	Relay 13 normally open contact	
90*	С	Common relays 11, 12, 13, 14 and 15 (MAX 6A)	
91*	RL14	Relay 14 normally open contact	
92*	RL15	Relay 15 normally open contact	
	IPRC315D** - Digital Outputs		
70**	RL1	Relay 1 normally open contact	
71**	RL2	Relay 2 normally open contact	
72**	RL3	Relay 3 normally open contact	
73**	С	Common relays 1, 2, 3 and 4	
74**	RL4	Relay 4 normally open contact	
75**	С	Common relays 1, 2, 3 and 4	
76**	С	Common relays 5, 6 and 7	
77**	RL5	Relay 5 normally open contact	

Input No.	Type of Input	Description
78**	RL6	Relay 6 normally open contact
79**	RL7	Relay 7 normally open contact
80**	RL8	Relay 8 normally open contact
81**	RL9	Relay 9 normally open contact
82**	RL10	Relay 10 normally open contact
83**	С	Common relays 8, 9 and 10
84**	RL11	SSR 11 normally open contact
85**	RL12	SSR 12 normally open contact
86**	RL13	SSR 13 normally open contact
87**	С	Common relays 11, 12 and 13
88**	С	Common relays 11, 12 and 13
89**	С	Common relays 14 and 15
90**	С	Common relays 14 and 15
91**	RL14	SSR 14 normally open contact
92**	С	Common relays 14 and 15
93**	RL15	SSR 15 normally open contact
94	RS485 Master	RS485 Master connection (-)
95	RS485 Master	RS485 Master connection (+)
96	RS485 Master	RS485 Master connection (insulated gnd)
97	RS485 Slave	RS485 Slave connection (-)
98	RS485 Slave	RS485 Slave connection (+)
99	RS485 Slave	RS485 Slave connection (insulated gnd)
100	CAN Bus	CAN Bus connection (+)
101	CAN Bus	CAN Bus connection (-)
102	CAN Bus	CAN Bus connection (gnd)
103	Remote Display	Connection for VISOGRAPH remote terminal (Vnr)
104	Remote Display	Connection for VISOGRAPH remote terminal (+)
105	Remote Display	Connection for VISOGRAPH remote terminal (-)
106	Modem Reset	NOT USED
107	Modem Reset	NOT USED

1.4 IPRC208D

Supply 24V ∺

1.4.1 Description of the connections

Connector	Description
1 2 3 4 5 6 7 8	Connector for 24Vac/dc power supply Analogue inputs (Pb1 - Pb6, PbC) Additional power (+5Vdc, +12Vdc, GND) Analogue outputs (Out1 - Out4, GND)
20 21 22 23 24 25 26 27 28 29 30 31	24Vac/dc digital inputs (DI1 - DI11, GND)
Remote Display Vnr + - + 60[61]62]63]64]65]66	Connector for remote terminal (VISOGRAPH), maximum 1 terminal per iPRO. RS485 Slave connector Serial port connector (LAN or RS485)
!	USB port for downloads (BIOS, ISaGRAF® application, maps of parameters, remote display applications, network configuration, website) and uploads (log files) Connection with the computer via a USB-ETH converter
40 41 A2 43 44 45	Digital relay outputs 4 NO relays, 2 common
46 47 48 49 50 51	Digital relay outputs 4 NO relays, 2 common

1.4.2 Description of the inputs and outputs

Input No.	Type of Input	Description
1	Supply	Reference "-"/GND power (24Vac or 24Vdc)
2	Pb1	Configurable analogue input 1 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
3	Pb2	Configurable analogue input 2 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
4	Pb3	Configurable analogue input 3 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
5	+12V	Additional power +12Vdc
6	+5V	Additional power +5Vdc
7	Out1	Analogue output 1 0 - 10V, 4 - 20mA, Relay
8	Out2	Analogue output 2 0 - 10V, 4 - 20mA, Relay
9	Supply	Reference "+" power supply (24Vac or 24Vdc)
10	Pb4	Configurable analogue input 4 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
11	Pb5	Configurable analogue input 5 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
12	Pb6	Configurable analogue input 6 (NTC, PTC, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
13	PbC	Common analogue inputs (NTC, PTC, DI)

Input No.	Type of Input	Description
14	GND(-)	Additional power reference 5Vdc and 12Vdc, analogue inputs (0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V), analogue outputs
15	Out3	Analogue output 3 0 - 10V, 4 - 20mA, Relay
16	Out4	Analogue output 4 0 - 10V, 4 - 20mA, Relay
20	DI1	Digital input 1 24Vac/dc
21	DI2	Digital input 2 24Vac/dc
22	DI3	Digital input 3 24Vac/dc
23	DI4	Digital input 4 24Vac/dc
24	DI5	Digital input 5 24Vac/dc
25	DI6	Digital input 6 24Vac/dc
26	DI7	Digital input 7 24Vac/dc
27	DI8	Digital input 8 24Vac/dc
28	DI9	Digital input 9 24Vac/dc
29	DI10	Digital input 10 24Vac/dc
30	DI11	Digital input 11 24Vac/dc
31	GND(-)	Reference "-" for digital inputs from1 to 11 (if version with dry contacts, this input has to be used only as common for the digital inputs)
40	С	Common relays 1, 2, 3 and 4 (MAX 10A)
41	С	Common relays 1, 2, 3 and 4 (MAX 10A)
42	RL1	Relay 1 normally open contact
43	RL2	Relay 2 normally open contact
44	RL3	Relay 3 normally open contact
45	RL4	Relay 4 normally open contact
46	RL5	Relay 5 normally open contact
47	С	Common relays 5, 6, 7 and 8 (MAX 10A)
48	С	Common relays 5, 6, 7 and 8 (MAX 10A)
49	RL6	Relay 6 normally open contact
50	RL7	Relay 7 normally open contact
51	RL8	Relay 8 normally open contact
60	Remote Display	Connection for VISOGRAPH remote terminal (Vnr)
61	Remote Display	Connection for VISOGRAPH remote terminal (+)
62	Remote Display	Connection for VISOGRAPH remote terminal (-)
63	RS485 Slave	RS485 Slave connection (-)

Input No.	Type of Input	Description
64	RS485 Slave	RS485 Slave connection (+)
65	LAN	LAN Connection (-)
66	LAN	LAN Connection (+)

1.5 Probe connections – IPRC215D/IPRC315D and IPRC208D

1.5.1 <u>Temperature probes (NTC and PTC)</u>

2-row sensors that do not require polarity to be respected. Each sensor must be connected through one of the inputs (from Pb1 to Pb10) and the common (PbC) as shown in the diagram below.

Recommendations:

- follow the diagram of the device used, for the numbering.
- the configuration is determined by the application.
- if used as a digital input (potential free not live), use the same connection configuration of the sensors.

1.5.2 Pressure transducers and current probes (0 - 20mA, 4 - 20mA)

2-row sensors that require +12Vdc power supply.

Each sensor must be connected through one of the inputs (from Pb1 to Pb10) and the power supply (+12V) as shown in the diagram below.

Recommendations:

- follow the diagram of the device used, for the numbering.

- the configuration is determined by the application.

1.5.3 Live probes and ratiometric pressure transducers (0 - 5V)

3-row sensors that require +5Vdc power supply.

Each sensor must be connected through one of the inputs (from Pb1 to Pb10) and the power supply (+5V/GND) as shown in the diagram below.

Recommendations:

- follow the diagram of the device used, for the numbering.

- the configuration is determined by the application.

1.6 CONNECTION OF THE DIGITAL INPUTS

The digital inputs in the programmable controllers and expansions are fully configurable. Depending on the model used, the digital inputs can be used as potential free or live (24Vac/dc) digital inputs.

1.6.1 Potential-free digital inputs

Recommendations:

- follow the diagram of the device used, for the numbering.

- the configuration is determined by the application.

1.6.2 Live digital inputs (24Vac/dc)

Recommendations:

- follow the diagram of the device used, for the numbering.

- the configuration is determined by the application.

1.7 Connecting Analog Outputs

1.7.1 IPRC215D and IPRC315D Analog outputs connection

Analog Output Isolation

IIIIIDO NOT USE The Same Secondary Of The Controller's PowerIII

The Electrical Devices Controlled By The Analog Outputs Must Be Powered Separately With Another Transformer In Order To Prevent The Outputs From Malfunctioning Or Being Damaged

Analog Outputs 0-10vdc (6)

- Analog Outputs 1-2 Use Pins 21-22
- Analog Outputs 3-4 Use Pins 23-24
- Analog Outputs 5-6 Use Pins 26-27
- The Ground Side Of Each Device Connected To An Analog Output Must Connect To Pin 25

Remember:

- DO NOT USE The Same Secondary Of The Controller's Power.
- The electrical devices controlled by these analog outputs must be powered separately with another transformer in order to prevent the outputs from malfunctioning or being damaged
- Analog Outputs Can Source Up To A Maximum Of 40ma On Outputs 1-4, and 20ma on Outputs 5-6

1.7.2 Digital outputs

Туре:	Relays with NO, NC and SSR contacts
Number of outputs:	Up to 15
Maximum load:	Relays with normally open contact: 5A(250Vac) SPST 5(2)A SSR relays with normally open contact 1A(12 - 250Vac): - only in AC load - minimum current is 50mA (equivalent to 12W - 250Vac) - internal impedance 300KΩ (current 0.2mA at 250Vac with an open contact)
Notes:	Verify the capacity of the output used. There is double insulation between the digital outputs and the low voltage of the rest of the circuit. Do not use different voltages for the various groups of relays nor within each group.

1.7.3 Electrical specifications

Power Supply:	24Vac +10/-15%, 50/60Hz 20 - 36Vdc
Consumption:	20VA (Vac), 15W (Vdc)
Connectors:	Phoenix quick coupling connectors for low voltage STELVIO 90° screw connectors for digital outputs (250Vac, 6A max)
Microprocessor:	AT91RM9200 32-bit 200Mhz
Permanent FLASH memory:	128MB, in 8-bit
RAM:	32MB o 64MB, in 16-bit
Internal clock:	standard

1.7.4 Plastic container

Mount:	On a DIN rail (EN 50022, DIN 43880)
	Fastened with screws via the removable plastic flaps.
Material:	PC-ABS Thermoplastic
Self-extinguishing:	V0 (UL94)
Comparative Tracking Index (CTI):	300V

Supply 24V ₩

1.8.1 Description of the connections

Connector	Description
Înd 1 2 3 4 5 6 7 8 Ind 9 10 11 12 13 14 15 16	Connector for 24Vac/dc power supply Analogue inputs (Pb1 - Pb10, PbC) Additional power (+5Vdc, +12Vdc, GND)
21 22 23 24 25 26 27 28 29 30	Opto-insulated analogue outputs (Out1 - Out6, GND) 24Vac/dc power supply for the opto-insulated analogue output
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	Potential free opto-insulated digital inputs (DI1 - DI20, DIC) Opto-insulated 24Vac/dc digital inputs (DI1 - DI20, GND)
_LAN ↓ 103 104 ⊭ &	LAN serial port connector Rx and Tx LED to indicate that communication is active
	CANBUS Connector Rx and Tx LED to indicate that communication is active Line terminal (Term)
	Dip-switch to set the address of the device.
70 71 72 73 74 75	Digital relay outputs 3 NO relays, 1 common and 2 potential free (Neutral)
76 77 78 79 80 81 82 83	Digital relay outputs 5 NO relays, 1 common and 2 potential free (Neutral)
84 85 86	Digital relay outputs 2 NO relays, 1 common
87 88 89 90 91 92 93	Digital relay outputs 5 NO relays, 1 common and 1 potential free (Neutral) The position 93 is not connected
PWR ON ALARM	Green power LEDs (PWR ON) and red alarm signal LED (ALARM) See relative paragraph

1.8.2 Description of the inputs and outputs

Input No.	Type of Input	Description
1	Supply	Reference "-"/GND power (24Vac or 24Vdc)
2	Pb1	Configurable analogue input 1 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
3	Pb2	Configurable analogue input 2 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
4	Pb3	Configurable analogue input 3 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)

5	Pb4	Configurable analogue input 4 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
6	Pb5	Configurable analogue input 5 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
7	PbC	Common analogue inputs (NTC, PTC, PT1000, DI)
8	GND(-)	Additional power reference 5Vdc and 12Vdc and analogue inputs (0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V)
9	Supply	Reference "+" power supply (24Vac or 24Vdc)
10	Pb6	Configurable analogue input 6 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
11	Pb7	Configurable analogue input 7 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
12	Pb8	Configurable analogue input 8 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
13	Pb9	Configurable analogue input 9 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
14	Pb10	Configurable analogue input 10 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V, DI)
15	+5V	Additional power +5Vdc
16	+12V	Additional power +12Vdc
21	Out1	Opto-insulated analogue output 1 0 - 10V
22	Out2	Opto-insulated analogue output 2 0 - 10V
23	Out3	Opto-insulated analogue output 3 0 - 10V
24	Out4	Opto-insulated analogue output 4 0 - 10V
25	GND(-)	Common opto-insulated analogue output
26	Out5	Analogue output 5 0 - 10V, 4 - 20mA, Opto-insulated relay
27	Out6	Analogue output 6 0 - 10V, 4 - 20mA, Opto-insulated relay
28	Supply	Power for opto-insulated analogue outputs at 24Vac or 24Vdc(-)
29	Supply	Power for opto-insulated analogue outputs at 24Vac or 24Vdc(+)
30	GND(-)	Common opto-insulated analogue output
40	DI1	Opto-insulated digital input 1
41	DI2	Opto-insulated digital input 2
42	DI3	Opto-insulated digital input 3
43	DI4	Opto-insulated digital input 4
44	DI5	Opto-insulated digital input 5
45	DI6	Opto-insulated digital input 6
46	DI7	Opto-insulated digital input 7
47	DI8	Opto-insulated digital input 8
48	DI9	Opto-insulated digital input 9
49	DI10	Opto-insulated digital input 10
50	GND(-)	Reference "-" for opto-insulated digital inputs 1 to 20 (if inputs 24Vac or 24Vdc)

51 DI11 Opto-insulated digital input 11 52 DI12 Opto-insulated digital input 12 53 DI13 Opto-insulated digital input 13 54 DI14 Opto-insulated digital input 14 55 DI15 Opto-insulated digital input 15 56 DI16 Opto-insulated digital input 16	
52 Dl12 Opto-insulated digital input 12 53 Dl13 Opto-insulated digital input 13 54 Dl14 Opto-insulated digital input 14 55 Dl15 Opto-insulated digital input 15 56 Dl16 Opto-insulated digital input 16	
53 DI13 Opto-insulated digital input 13 54 DI14 Opto-insulated digital input 14 55 DI15 Opto-insulated digital input 15 56 DI16 Opto-insulated digital input 16	
54 DI14 Opto-insulated digital input 14 55 DI15 Opto-insulated digital input 15 56 DI16 Opto-insulated digital input 16	
55 DI15 Opto-insulated digital input 15	
56 DI16 Onto-insulated digital input 16	
57 DI17 Opto-insulated digital input 17	
58 DI18 Opto-insulated digital input 18	
59 DI19 Opto-insulated digital input 19	
60 DI20 Opto-insulated digital input 20	
61 IDC Common opto-insulated digital inputs 1 to 20 (if potential free	ee inputs)
70 RL1 Relay 1 normally open contact	
71 P Common relays 1, 2 and 3 (MAX 6A)	
72 RL2 Relay 2 normally open contact	
73 RL3 Relay 3 normally open contact	
74 N Potential free contact (MAX 6A)	
75 N Potential free contact (MAX 6A)	
76 RL4 Relay 4 normally open contact	
77 RL5 Relay 5 normally closed contact	
78 RL6 Relay 6 normally closed contact	
79 RL7 Relay 7 normally closed contact	
80 P Common relays 4, 5, 6, 7 and 8 (MAX 6A)	
81 RL8 Relay 8 normally closed contact	
82 N Potential free contact (MAX 6A)	
83 N Potential free contact (MAX 6A)	
84 RL9 Relay 9 normally closed contact	
85 RL10 Relay 10 normally closed contact	
86 P Common relays 9 and 10 (MAX 6A)	
87 RL11 Relay 11 normally closed contact	
88 RL12 Relay 12 normally closed contact	
89 RL13 Relay 13 normally closed contact	
90 P Common relays 11, 12, 13, 14 and 15 (MAX 6A)	
91 RL14 Relay 14 normally closed contact	

93	С	Potential free contact (MAX 6A)
100	CAN Bus	CAN Bus connection (+), not open
101	CAN Bus	CAN Bus connection (-), not open
102	CAN Bus	CAN Bus connection (insulated gnd), not open
103	LAN	LAN Connection (+)
104	LAN	LAN Connection (-)

1.9 Technical specifications

1.9.1 Analogue inputs

Analogue conversion type:	10-bit A/D converter
Number of inputs:	10
Type of analogue input:	NTC Dixell (-50T110°C; 10KΩ±1% at 25°C)
(configurable via software parameter)	PTC Dixell(-55T115°C; 990Ω±1% at 25°C)
	Digital input (potential free contact)
	Voltage:, 0 - 5V (input resistance 3.7KΩ)
	Current:, 4 - 20mA (input resistance 100Ω)
Digital input status variation detection	100ms (in any case it depends on the cycle time set by
time:	the user in the given application)
Accuracy:	NTC, PTC: ±1°C
	0-5V: ±100mV
	4-20mA: ±0.30mA
Additional power:	+12V: 200mA in total
-	+5v: 100mA
Notes:	Any inputs that are powered with a voltage that differs
97.	from that supplied by the device (+12V or +5V) must be
Δ	powered separately with another transformer (do not use
	the same secondary of the controller's power) in order to
	prevent the inputs from malfunctioning or being
	damaged.

1.9.2 Digital inputs

Туре:	Opto-insulated potential free or live contact (24Vac/dc)
(configurable via software parameter)	External power 24Vac/dc ±20%
Number of inputs:	20
Digital input status variation detection	100ms (in any case it depends on the cycle time set by
time:	the user in the given application)
Notes:	If the digital inputs are used with voltage, use another
	transformer (do not use the same secondary of the controller's power) in order to prevent the inputs from malfunctioning or being damaged.

1.9.3 Analogue outputs

Туре:	Opto-insulated with separate 24Vac/dc power supply
Number of outputs:	6
Type of analogue output:	4 fixed outputs 0-10Vdc (Out1 - Out4)
(configurable via software parameter)	2 configurable outputs 0-10Vdc, 4-20mA (Out5 and
	Out6)
Maximum load:	40mA (Out1 - Out4)
	20mA (Out5 and Out6) max with configured outputs 0-
	10Vdc
	400Ω max with configured outputs 4-20Ma
	22Ω per live analogue output
Accuracy:	Out1 - Out4: ±2% full scale
	Out5 – Out6: ±2% full scale
Resolution:	8bit
Notes:	The electrical devices controlled by these analogue
•	outputs must be powered separately with another
Δ	transformer (do not use the same secondary of the
	controller's power) in order to prevent the outputs from
	malfunctioning or being damaged.

1.9.4 Digital outputs

Туре:	Relays with NO, NC and SSR contacts
Number of outputs:	Up to 15
Maximum load:	Relays with normally open contact: $5A(250Vac)$ SPST $5(2)A$ SSR relays with normally open contact $1A(12 - 250Vac)$: - only in AC load - minimum current is 50mA (equivalent to 12W - 250Vac) - internal impedance $300K\Omega$ (current 0.2mA at 250Vac with an open contact)
Notes:	Verify the capacity of the output used. There is double insulation between the digital outputs and the low voltage of the rest of the circuit. Do not use different voltages for the various groups of relays nor within each group.

1.9.5 Mechanical specifications

10 DIN module

1.9.6 Electrical specifications

Power Supply:	24Vac +10/-15%, 50/60Hz 20 - 36Vdc
Consumption:	20VA (Vac), 15W (Vdc)
Connectors:	Phoenix quick coupling connectors for low voltage STELVIO 90° screw connectors for digital outputs (250Vac, 6A max)
Microprocessor:	AT91RM9200 32-bit 200Mhz
Permanent FLASH memory:	128MB, in 8-bit
RAM:	32MB o 64MB, in 16-bit
Internal clock:	standard

1.9.7 Plastic container

Mount:	On a DIN rail (EN 50022, DIN 43880)
	Fastened with screws via the removable plastic flaps.
Material:	PC-ABS Thermoplastic
Self-extinguishing:	V0 (UL94)
Comparative Tracking Index (CTI):	300V
Colour:	White

1.10 IPX206D

1.10.1 Description of the connections

Connector	Description
ਰੋ- 1 2 3 4 5 6 7 8 - 9 10 11 12 13 14 15 16 ਨੂੰ 9 10 11 12 13 14 15 16	Connector for 24Vac/dc power supply Analogue inputs (Pb1 - Pb5, PbC) Potential free digital inputs (DI1 - DI3, DIC) or Power supply digital inputs (DI1 - DI3, ID) Additional power (+5Vdc, +12Vdc, GND)
20 21 22 23 24 25 26 27 28 29	Analogue outputs (Out1Out3, GND) Analogue inputs (Pb6 - Pb7, PbC) Additional power (+5Vdc, +12Vdc, GND)
0 6 6 6 6 6 6 6 7 8 9 7 7	Digital relay outputs (depend on the part number of the device): 5 NO relays + 1 changeover relay or 4 NO relays + 1 changeover relay + 1 SSR relay
CAN Bus	CANBUS Connector Rx and Tx LED to indicate that communication is active Line terminal (Term)
NY 155	LAN serial port connector
ADDRESS	Dip-switch to set the address of the device (for CANBUS and LAN communication).
PWR ON	Green LED to indicate the presence of the power supply
ALARM	Red status LED (ALARM) See relative paragraph

1.10.2 Description of the inputs and outputs

Input	Type of Input	Description
1	Supply	Reference "-"/GND power (24Vac or 24Vdc)
2	Pb1	Configurable analogue input 1 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 5V, 0 - 1V, 0 - 10V, DI, not used)
3	Pb2	Configurable analogue input 2 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 5V, 0 - 1V, 0 - 10V, DI, not used)
4	Pb3	Configurable analogue input 3 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 5V, 0 - 1V, 0 - 10V, DI, not used)
5	Pb4	Configurable analogue input 4 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 5V, 0 - 1V, 0 - 10V, DI, not used)
6	Pb5	Configurable analogue input 5 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 5V, 0 - 1V, 0 - 10V, DI, not used)
7	+12V	Additional power +12Vdc
8	ID	Common for digital inputs from 1 to 3 when power supply (24Vac/dc)
9	Supply	Reference "+" power supply (24Vac or 24Vdc)
10	DI1	Digital input 1 (potential free contact (13) or power supply (8))

11	DI2	Digital input 2 (potential free contact (13) or power supply (8))
12	DI3	Digital input 3 (potential free contact (13) or power supply (8))
13	DIC	Common for digital inputs from 1 to 3 when potential free
14	Pbc	Common analogue inputs (NTC, PTC, PT1000, DI)
15	GND(-)	Additional power reference 5Vdc and 12Vdc and analogue inputs (0 - 20mA, 4 - 20mA, 0 - 10V, 0 - 1V, 0 - 5V)
16	+5V	Additional power +5Vdc
20	GND(-)	Additional power reference 5Vdc, 12Vdc and analogue outputs
21	Out1	Analogue output 1 0 - 10V
22	Out2	Analogue output 2 0 - 10V
23	Out3	Analogue output 3 0 - 10V
24	Pb6	Configurable analogue input 6 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 5V, 0 - 1V, 0 - 10V, DI, not used)
25	GND(-)	Additional power reference 5Vdc, 12Vdc and analogue outputs
26	+12V	Additional power +12Vdc
27	+5V	Additional power +5Vdc
28	Pbc	Common analogue inputs (NTC, PTC, PT1000, DI)
29	Pb7	Configurable analogue input 7 (NTC, PTC, PT1000, 0 - 20mA, 4 - 20mA, 0 - 5V, 0 - 1V, 0 - 10V, DI, not used)
30	CAN Bus	CAN Bus connection (+), not open
32	CAN Bus	CAN Bus connection (-), not open
33	CAN Bus	CAN Bus connection (gnd), not open
35	LAN	LAN connection (+)
36	LAN	LAN connection (-)
60	RL1	Relay 1 normally open contact
61	С	Common relays 1 and 2 (MAX 5A)
62	RL2	Relay 2 normally open contact
63	RL3	Relay 3 normally open contact
64	С	Common relays 3 and 4 (MAX 5A)
65	RL4	Relay 4 normally open contact
66	С	Common relay 5 (please check the electrical characteristics of the relay used)
67	RL5	Relay 5 normally open contact (please check the electrical characteristics of the relay used)
68	NU	Not used
69	RL6	Relay 6 normally closed contact
70	RL6	Relay 6 normally open contact
71	С	Common relay 6 (MAX 8A)

1.11 Technical specifications

1.11.1 Analogue inputs

Analogue conversion type:	10-bit A/D converter
Number of inputs:	7
Type of analogue input:	NTC Dixell (-50T110°C; 10KΩ±1% at 25°C)
(configurable via software parameter)	PTC Dixell(-55T115°C; 990Ω±1% at 25°C)
	Digital input (potential free contact)
	Voltage: 0 - 5V, (input resistance 3.7KΩ)
	Current:, 4 - 20mA (input resistance 1000)
Digital input status variation detection	100ms (in any case it depends on the cycle time set by
time:	the user in the given application)
Accuracy:	NTC, PTC,: ±1°C
	0-5V: ±100mV
	4-20mA: ±0.30mA
Additional power:	+12V: 40mA max per terminal
	+5v: 100mA
Notes:	Any inputs that are powered with a voltage that differs
27.	from that supplied by the device (+12V or +5V) must be
Δ.	powered separately with another transformer (do not use
	the same secondary of the controller's power) in order to
	prevent the inputs from malfunctioning or being
	damaged.

1.11.2 Digital inputs

Type: (configurable via software parameter)	Opto-insulated potential free contact or power supply
Number of inputs:	3
Digital input status variation detection time:	100ms (in any case it depends on the cycle time set by the user in the given application)
Notes:	Pay attention to use the right common input when the digital inputs are used as dry contacts or power supply contacts.

1.11.3 Analogue outputs

Туре:	Non opto-insulated internal power
Number of outputs:	3
Type of analogue output: (configurable via software parameter)	3 fixed outputs 0-10Vdc (Out1 - Out3)
Maximum load:	40mA (Out1 - Out3)
	22Ω per live analogue output
Accuracy:	Out1 - Out3: ±2% full scale
Resolution:	8bit
Notes:	The electrical devices controlled by these analogue
	outputs must be powered separately with another transformer (do not use the same secondary of the controller's power) in order to prevent the outputs from malfunctioning or being damaged.

1.11.4 Digital outputs

Туре:	Relays with NO, NC and SSR contacts
Number of outputs:	6
Type of output:	Relays with normally open contact:
(configurable via software parameter)	- RL1, RL2, RL3, RL4, RL5*
	Relays with changeover contact:
	- RL6
	SSR relays with normally open contact:
	- RL5*
	(*) the kind of the relay RL5 depend on the model of
	the device.
Maximum load:	Relays with normally open contact: 5A(250Vac) SPST
	5(2)A
	Relays with changeover contact: 8A(250Vac) SPDT
	8(3)A
	SSR relays with normally open contact 1A(12 - 250Vac):
	- only in AC load
	- minimum current is 50mA (equivalent to 12W - 250Vac)
	- internal impedance 300KΩ (current 0.2mA at 250Vac
	with an open contact)
Notes:	Verify the capacity of the output used. There is double
	insulation between the digital outputs and the low
	voltage of the rest of the circuit.
	The common relays of the outputs are separate and split
	into groups.

1.11.5 Mechanical specifications

4 DIN module

1.11.6 Electrical specifications

Power Supply:	24Vac +10/-15%, 50/60Hz 20 - 36Vdc
Consumption:	10VA (Vac), 10W (Vdc)
Connectors:	Phoenix quick coupling connectors for low voltage (for IPX206D) STELVIO 90° screw connectors for digital outputs (250Vac, 6A max)

1.11.7 Plastic container

Mount:	On a DIN rail (EN 50022, DIN 43880)
	Fastened with screws via the removable plastic flaps.
Material:	PC-ABS Thermoplastic
Self-extinguishing:	V0 (UL94)
Comparative Tracking Index (CTI):	300V
Colour:	Black

2 SYSTEM CONFIGURATION

2.1 CANBUS ADDRESSES OF EXPANSIONS AND DRIVERS

The IPRC215D can be connected via CANBUS the following devices, that must have the addresses reported in the below table

		CANBUS ADDRESS				
		IPRC215D	IPX206D	IPX215D	XEV20D_1	XEV20D_2
1	STAND ALONE	Х				
2	WITH 1 EXPANSION -	Х	2		3	4
	Case 1					
3	WITH 1 EXPANSION -	Х		1	3	4
	Case 2					
4	WITH 2 EXPANSIONS	Х	2	1	3	4

The address is set is set via a dip-switch and numbering is binary as shown in the table below:

2	3	Δ
	□ 2	2 3

	1	2	3	4		
Adr. 0	OFF	OFF	OFF	OFF	$\langle $	Not used
Adr. 1	ON	OFF	OFF	OFF		
Adr. 2	OFF	ON	OFF	OFF		
Adr. 3	ON	ON	OFF	OFF		
Adr. 4	OFF	OFF	ON	OFF		
Adr. 5	ON	OFF	ON	OFF		
Adr. 6	OFF	ON	ON	OFF		
Adr. 7	ON	ON	ON	OFF		
Adr. 8	OFF	OFF	OFF	ON		
Adr. 9	ON	OFF	OFF	ON		
Adr. 10	OFF	ON	OFF	ON		
Adr. 11	ON	ON	OFF	ON		
Adr. 12	OFF	OFF	ON	ON		
Adr. 13	ON	OFF	ON	ON		
Adr. 14	OFF	ON	ON	ON		
Adr. 15	ON	ON	ON	ON		

If the address is changed while the device is on, the iProRACK and the Expansion- Driver must be switched off and on again to confirm the new address.

2.2 EXPANSIONS AND DRIVERS – Wiring

2.2.1 CANBUS CONNECTION

3 HOW TO CONNECT THE IPRORACK TO A PC

3.1 Direct connection (between iPRO and PC with a cable)

With this kind of connection is possible to connect directly your personal computer with the programmable controller iProRACK. In this case, you need a standard "Crossover Cable" (cod. Dixell CAB/WEB/PC). The PC can communicate with the iPRO only if the settings in the devices are aligned; this means that the PC and the iPRO have to work in the same network.

- 1. Disconnect your computer from the data network of your company and connect the PC with the iPRO through the Crossover cable.
- 2. The personal computer has to be set in the same network of the iPRO.
 - a. In the windows environment click with the mouse on "start" button
- 3. Choose "Control Panel" and select "Network and dial-up connections"
- 4. Choose "Local area connection"
- 5. Choose "Properties" and double click on "Internet Protocol (TCP/IP)".

In this window set the following parameters (as showed in the picture):

IP address: 192.168.0.200 Subnet Mask: 255.255.255.0

Proprietà - Protocollo Internet (TCP/IP) 🛛 ? 🗙						
Generale	Generale					
È possibile ottenere l'assegnazione automatica delle impostazioni IP se la rete supporta tale caratteristica. In caso contrario, sarà necessario richiedere all'amministratore di rete le impostazioni IP corrette.						
O Ottieni automaticamente un inc	firizzo IP					
💿 Utilizza il seguente indirizzo I <u>P</u> :						
Indirizzo IP:	192.168.0.200					
S <u>u</u> bnet mask:	255.255.255.0					
<u>G</u> ateway predefinito:						
O O <u>t</u> tieni indirizzo server DNS au	tomaticamente					
💿 Utilizza i seguenti indirizzi serve	er <u>D</u> NS:					
Server DNS preferito:						
Server DNS alternativo:						
Avangate						
	OK Annulla					

Click "OK" to confirm.

Launch the browser in your computer and write the following web site address: http://192.168.0.250 (if your IP is different, write the correct one):

المعند (Login	iPro - Configuration &	Analysis EMERSON. Climate Technologies
Home Variables	iPro by Dixell S.r.l.	System status
Configure Files Accounts Advanced	DIXELL S.r.I. Z.I. Via dell'Industria, 27 32010 Pieve d'Alpago (BL) - ITALY P.IVA/VAT: IT 00876120254 Tel. +39.0437.9833 r.a. Fax +39.0437.989.313 dixell@dixelL.com	BIOS release is 2012021600 Application release is not defined ISaGraf status: ok Free disk space: 99988 KB Total memory: 64 MB
Firewall	www.dixell.com User web site	IP Address: 10.100.81.238 iPro date: 2012/02/22 - 16.40

To be able to modify the settings, it is necessary to do the login. Click Login:

iPro -	Configu	uration &	Analysis	
		Login		
by Dixe	Login			atus
dell'Industi Pieve d'Alpa	Password			2012021600 ase is not define
AT: IT 0087		ОК	Cancel	ok
).0437.983 <mark></mark>).0437.989.313			Total memor	асс: 99988 KB v: 64 MB

Login: admin Password: Dixell

Click OK to confirm

If necessary it is possible to change the IP address; click the Configure button. In this page define the TCP/IP section comply with your network.

ТСР/ІР		Port			
IP address: Netmask: Network: Gateway: DNS: Secondary DNS:	192.168.0.250 255.255.255.0 192.168.0.0 192.168.0.1 192.168.0.250 8.8.8.8	HTTP port: HTTPS port: ModBus slave Isa WB port: Isa Binding port Visoprog port: SSH port:	port: prt:	80 443 502 1131 1113 6666 22	
ModBus over RS485 Modbus slave: Address: Parameters:	Enabled 1 9600,N,8,1	Other VisoGraph bau Timezone: Clock synchro NTP server:	ud-rate: nization:	38400 Europe/Sofia Disabled 193.204.114.232	 ✓ ✓ ✓
		OK	Resto	re Dixell Configura	ation

Click "OK" to confirm the operation.

After this operation, it is necessary to reboot the iPRO.

3.2 Intranet / Ethernet connection (Local Area Network)

The Intranet or Ethernet connection should be initially managed by the net administrator that will assign one free IP address to reach the iPRO. This number is an example of what you should expect with the default IP of the iPRO: 192.168.0.250.

After receiving the address from your network Administrator the iPRO must be set with this number (through the procedure described in the chapter 5.2).

Use a standard RJ45 network cable to connect the unit to your existing LAN.

The Intranet method allows the connection to interact with iPRO from all the PC Clients.

To check if the connection has been established try in this way:

From your computer launch: start -→ run

In the box write the following string:

Esegui		?×
	Digitare il nome del programma, della cartella, del documento o della risorsa Internet da aprire.	
<u>A</u> pri:	ping 192.168.0.250 -t	~
	OK Annulla Sfogl	ia

Then click OK.

If the connection is OK, in this window you will see the following information:

C:\WINDOWS\system32\ping.exe	- 🗆 X
Esecuzione di Ping 192.168.0.250 con 32 byte di dati:	<u> </u>
Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128 Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128	
Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128 Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128	
Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128 Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128	
Alsposta da 192.168.0.250: byte=32 durata(1ms TIL=128 Risposta da 192.168.0.250: byte=32 durata(1ms TIL=128 Risposta da 192.168.0.250: byte=32 durata(1ms TIL=128	
Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128 Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128	
Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128 Risposta da 192.168.0.250: byte=32 durata<1ms TTL=128 Disposta da 192.168.0.250: byte=32 durata<1ms TTL=128	
Risposta da 192.168.0.250: byte=32 durata(108 TTL=128	
	-

3.3 Port forwarding

Port forwarding allows remote computers (e.g. public machines on the Internet) to connect to a specific computer within a private LAN.

The ports that have to be opened are:

- 22
- 80
- 1131
- 6666

4 VISOTOUCH VTIPR

The iProRACK rel. 6.4 can be connected to remote touch panel Visotouch, where the main variables and status are been displayed and the user can set up the system.

4.1 What is displayed when the keyboard is connected

Touch the panel to enter the main screen visualization

The visotuoch come back to this menu after several minutes without any touches.

4.2.1 Main icons: touch to move to...

	Go to page GENERAL MENU
•\$• 17:∎	Go to page SCHEMATIC
s. See	Go to page GASCOOLER
للحر	Go to page SERVICE
	Go to page ALARM
· • • — — — — — — — — — — — — — — — — —	Go to page CIRCUIT 2 if present
	Go to page PARALLEL COMPRESSORS if present
* ()	Go to page ALARM

4.2.2 Other icons to move to...

	Go to page GASCOOLER
2/4	Go to page COMPRESSORS
2.60 bar Setpoint	Go to page SET POINT
10.40 bar Setpoint	Go to page SET POINT

SUCTION	Click to " unit measure " (bar) to
2.67 bar Setpoint	modify unit measure from bar to Celsius
10.52 bar Setpoint	

4.2.3 Icons meanings

09:30	Real time clock (h:min)	
SUCTION 2.67 2.60 bar Setpoint	Circuit 1 (MT) Suction pressure (temperature) value and Suction set point	
DISCHARGE 10.52 bar Setpoint	Gas cooler pressure value and Gas cooler set point (always in temperature) 	
2/4 100%	running/available % of fan speed	
₽	Icon present only if there is one or more alarm(s) active. The number from 1 to 9+ is for the number of alarms active	
(The icon is white if there are no alarms active	

NOTE: the above schema is true also for CIRCUIT 2 (LT) and PARALLEL COMPRESSORS page if they are present. See below pic.

4.3 GEN	IERAL MENU					
From each page touch the EIN to enter the GENERAL MENU						
GENERAL MENU ⁹ (19:30						
	I/O Resources	Service	Setpoint			
	Log files	Parameters	Password			
Service	Go to page SERVICE	Log files	Go to LOG FILE			
Parameters	Go to page PARAMETER	Setpoint	Go to page SETPOINT			
Password	Go to PASSWORD Password inserted	I/O Resources	Go to I/O Page			

4.4 SCHEMATIC

According to the resources enabled, in this page the schematic of the circuit and the main variables are displayed

4.4.1 Icons to move to...

F	Go to MAIN PAGE
¢°	Go to page PARAMETER
100 % or 100 % or 100 % or 100 % or	Go to page GASCOOLER
14,23 bar	Go to LOW TEMPERATURE SUCTION LINE PAGE
100 %	Go to DE-SUPERHETER 1 page
14,23	Go to MEDIUM TEMPERATURE SUCTION LINE PAGE
	Go to PARALLEL COMPRESSION DETAILS PAGE
HR2	Go to HR2 DETAILS PAGE Green HR2 ON; White HR2 OFF
HR1	Go to HR1 DETAILS PAGE Green HR1 ON; White HR1 OFF

4.5 SERVICE

U On-Off	Go to ON_OFF page	S De-Superheat	Go to DE-SUPERHEATER page
Liss Heat Reclaim	Go to Heat Reclaim page	Device Status	Go to Device_Status page
Superheat	Go to Suction Superheat page	Core Sense	Go to Coresense Inf select page

Energy Meter Status	Go to Energy Meter Status page	Core Sense Setup	Go to CoresenseSetup page
Conf File Management	Go to Conf file Management page	L Real Time Clock	Go to Real Time Clock page
Conf IP & MDB Address	Go to Conf IP & ModBus Address page	Energy Saving	Go to Energy Saving page

Language	Go to Language page	i	Go to information page
Cooling Control	Go to Cooling Control page	Capacity	Go to System Capacity page

4.6 PARAMETER

4.6.1 Icons to move to...

Password	Go to PASSWORD Password inserted	Level 2	Go to PARAMETER LEVEL 2 If the PSW is requested, open directly the PSW value
	Password protected		
Level 1	Go to PARAMETER LEVEL 1		

4.7 PARAMETER LEVEL 1

This page contains all the parameters that can be modified without requiring a password. The parameter are collected in groups of omogeneus parameter.

The number of groups depends on the setting of the controller

4.7.1 Icons to move to...

Set Point	Go to SET POINT parameters*	Regulation	Go to page Regulation parameters*
Compressor Rack Setup	Go to page COMPRESSOR RACK SETUP parameters*	Superheat Alarm	Go to page Superheat Alarm parameters*

The parameters sub menu are the following:

- Set Point (SETC1-SETC2, SETPC)
- Compressor Rack setup (CF1, CF16-CF17, CF33)
- Different capacity Compressors setup(CF4-CF15, CF31-CF32)
- Regulation (CF18-CF25, CF28-CF30, CF34)
- Display (CF26-CF27)
- Analog Inputs_1 Probe 1-10 adjustment (Ai1-Ai11)
- Analog Inputs_2 Pressure Probe 1-10 set up (Ai12-Ai31)
- Analog Inputs_3 Probe 11-17 adjustment (Ai32-Ai38)
- Analog Inputs_4 Pressure Probe 11-17 set up (Ai39-Ai52)
- Analog Inputs_5 Probe 18-27 adjustment (Ai53-Ai62)
- Analog Inputs_6 Pressure Probe 18-27 set up (Ai63-Ai82)
- Gas cooler Heat Reclaim (HTRC0-HTRC42)
- Gas cooler (GC1-GC97)
- Safety Digital Inputs (SD1-SD3)
- Digital Inputs for liquid level (CDI1-CDI14)
- Compressor Action (RC1-RC8, RC25, RC35-RC42, RC45-RC48)

- Safety Compressors (SL1-SL11, SL14-SL23)
- Fan Action (RC9-RC24, RC33-RC34, RC43-RC44)
- Safety Fans(SL12-SL13)
- Alarms Configuration (AC1-AC2)
- Compressor Alarms (AL1-AL23)
- Fan Alarms (AL24-AL46)
- Dynamic Setpoint Suction (DSP1- DSP8)
- Dynamic Setpoint Condenser (DSP9-DSP16)
- Analog Outputs 1 (AO1_1-AO1_26) Analog Outputs 2 (AO2_1-AO2_26)
- Analog Outputs 3 (AO3_1-AO3_26)
- Analog Outputs 4 (AO4_1-AO4_26)
- Analog Outputs 5 (AO5_1-AO5_26) Analog Outputs 6 (AO6_1-AO6_26)
- Auxiliary Outputs (AR1-AR26)
- Superheat Alarms (ASH1- ASH38)
- Other (OT1 OT7)
- Coresense configuration(CO1-CO30)
- **DI CONFIGURATION (DIC1-DIC43)**
- DO CONFIGURATION (DOC1- DOC36)
- AO CONFIGURATION (AOC1- AOC15)
- AI CONFIGURATION (AIC1-AIC27)
- DHS (DSH1-DSH18)
- Parallel Compression Regulation (PC1-PC10)
- Gas Leak Detector (GLD1-GLD24)
- Discharge Temperature (DSC1-DSC14)

* The presence of this group depends on the controller setting. This could be not present or additional groups can be present.

472 EXAMPLE PARAMETER LEVEL 1 GROUP 1

NOTE: The list of parameters changes according to iProRACK configuration Once one of the parameter groups has been entered it has the following layout

Use the UP and DOWN arrow to scroll among the parameters list

USE SET to select a parameter and to confirm a parameter value

Use **DOUBLE UP** and **DOUBLE DOWN** to scroll among the parameter screens.

NOTE: is the screen is not touch for a guite long time the controller comes back to the main page

4.8 GASCOOLER

The GASCOOLER page, contains information related to the GasCooler and Flash Tank.

4.8.1 Icons to move to...

4.9 VALVE OVERRIDE

In this stage is possible to overrid the valve opening.

NOTE: To close completely the HPV and Bypass valve enable the ShutDown function.

4.10 ALARM PAGES

≡₽	ALARM	92 🍅	dd:mm	≡₽	ALARM	9 9 🍎	dd:mm
Compressor CIRC1	Compressor CIRC2	Fan CIRC1	I/0 ♠	Generic	Core Sense	Gas Cooler	I/0
Fan CIRC2	Circuit 1	Circuit 2	< ≫	Parallel Compressor			< ≫

To help the navigation among the alarms, the alarms are divided in several menus.

When an alarm is active the correspondent menu is flashing Touch the active menu to see which alarm is active

4.10.1 Alarm menu structure

The alarm menu has the following structure

Alarm reset: White if alarm not resettable Red if alarm resettable

4.11 COMPRESSOR PAGE

This page is visible only if there are more than one compressor enabled.

The number of compressors displayed is according to the real number of compressors present.

The compressors are identified as C1 for circuit 1 (MT) and C2 for Cricuit 2 (LT) or as PL for Parallel compression (PL)

4.11.1 COMPRESSOR MAINTENANCE

Regulation with some outputs disabled.

If some outputs are disabled they don't take part to the regulation, so the regulation goes on with the other outputs.

4.12 PASSWORD

The PASSWORD screen allows to set up a password (security code) and set which screens or menu are password protected. Below the menu that can be password protected

4.13 ON-OFF

This menu is designed to switch on and off each single circuit or all the rack The PASSWORD menu allows to come to the password menu.

4.13.1 Touch the icons to ...

ON-OFF unit Gray unit OFF Green unit ON	G Circuit 2	Present only if there are 2 circuits enabled ON-OFF Circuit 2 Gray Circuit 2 OFF; Green Circuit 2 ON
Present only if there are 2 circuits enabled ON-OFF Circuit 1 Gray Circuit 1 OFF Green Circuit 1 ON	Password	Go to PASSWORD Password inserted No password inserted

4.14 I/O Page

This page is design to display the status or values of controllers I/Os.

≡₽	INPUT / OUTF	PUT 🍟	09:30
Analog Inputs	Analog Outputs	Digital Inputs	*1 *1
Digital Outputs			ب ا

Analog Inputs	Go to ANALOG INPUTS	Digital Inputs	Go to DIGITAL INPUTS
Analog Outputs	Go to ANALOG OUTPUTS	Digital Outputs	Go to DIGITAL OUTPUTS

4.14.1 ANALOG INPUTS

4.14.2 ANALOG OUTPUTS

4.14.3 ANALOG OUTPUTS - HOW TO OVERRIDE THEM

4.14.4 DIGITAL INPUTS

4.14.5 DIGITAL OUTPUTS

Code of the	≣₽	DIGITAL OUT	PUTS	09:30	Touch the
Digital output	DOCI	Description DOC1	VALUE DOC1	ज्हर	Digital Output
	DOC2	Description DOC2	VALUE DOC2		SET label to
	50C3	Description DOC3	VALUE DOC3		Digital output
Function of the	DOC4	Description DOC4	VALUE DOC4		erenae page
Digital output	DOC5	Description DOC5	VALUE DOC5	\checkmark	

4.14.6 DIGITAL OUTPUTS - HOW TO OVERRIDE THEM

4.15 DE-SUPERHEATER 1

₩ 1/1 100%	% of de-superheater fan speed	External temp. 15.9 _{°C}	External temp value (present only if the probe will be use in de- superheater regulation)
DE-SUPERHEATER 1 16.7 °C 15.0°C Setpoint	Information related to De- superheater, set point and outlet temperature		

% present if pump modulating

modulating the % will be showed

4.17 COMPRESSORS DETAILS (EXAMPLE)

Example with 6 compressors. This is the max number of compressors displayed in a stage. If the icons is animated the correspondent compressor is running. This layout is used for:

MEDIUM TEMP. LINE

- LOW TEMP LINE
- PARALLEL LINE

4.18 INFORMATION PAGE

This page contains information about: BIOS, IPRORACK APPLICATION, VISOTOUCH APPLICATIONS

4.19 CAPACITY PAGE

This page contains information RACK real time capacity.

To have this page proper set, this function has to be enabled by parameter: CF41: MT compressor, CF45 LT compressor, and CF49: Parallel compressor.

Furthermore, the parameters related to compressor capacity:

- CF4-CF9 for Circuit 1: MT
- CF10-CF15 for Circuit 1: LT
- CF36-CF41 for parallel compresors

Have to be set.

Together with the parameter related to the VSD compressor capacity:

- CF42- CF44: inverter Circuit 1: MT
- CF46- CF48: inverter Circuit 2: LT
- CF50- CF52: inverter parallel compressors

Circuit 1 Capacity	When CF41=1, go to page CAPACITY DETAIL. To show circuit1 compressors' capacities. When CF41=0, this icon will be gray and not clickable.	Circuit 2 Capacity	When CF45=1 and circuit 2 is configured, go to page CAPACITY DETAIL. To show circuit2 compressors' capacities. Otherwise, this icon will be gray and not clickable.
Parallel Capacity	When CF49=1 and parallel circuit is configured, Go to page CAPACITY DETAIL. Show parallel circuit compressors' capacities. Otherwise, this icon will be gray and not clickable.		

4.19.1 CAPACITY DETAIL PAGE

4.20 LOG FILE PAGE

In this page it's possible to **export the files**, of the logs of the iProRACK : "Alarm log" and "Parameter log". To do it, an USB stick has to be inserted in the USB receptacle. The files entries the following information

The files contain the following information

- Alarm Log the info related to the alarms happened: type of alarm, start and stop time.
- ParamLog log of the following variables every 5 mis

No	Variable	
1	Suction pressure Circuit 1	
2	Condensing pressure C1	
3	Gas cooler outlet temperature	
4	Fan output voltage C1	
5	HPV valve opening	
6	BGV valve opening	
7	Suction pressure C2	
8	External temperature	

If a probe/valve is not configured, it shows "NU". If a probe is in alarm, it shows "ERR".

Note: The log files are only enabled when CF26=°C/Bar or CF26=Bar/°C.

After clicking the one icon from **General Menu**, it will show the information "Detecting USB, please wait..."

If none USB is inserted into the ipro, it will show the waring "Warning! USB not ready!"

Click this icon to detect the USB again.

If the USB is detected, it will show the log list, user can choose the log file that needs to be exported.

At the end one of the following messages is displayed:

In case of error repeat the operations or change the USB stick.

4.21 SUPERHEAT PAGE

The Superheat page displays the SH value of Circuit 1 and Circuit 2 suction line. Superheat1 is the superheat value for MT line. Superheat2 is the superheat value for LT line. If LT line is not present, only Superheat1 is shown.

4.22 CORE SENSE INFORMATION

The **Coresene Page** shows how many coresenses are connected to the iProRACK, up to 15. If some core senses are not configured, the corresponding icon is disabled. By clicking the icon, user can check the detailed information of each core sense.

4.22.1 CORESENSE INFORMATION PAGE

4.23 CORE SENSE SETUP

The **Coresene Setup Page** shows how many coresenses are connected to the iProRACK, up to 15.

If some core senses are not configured, the corresponding icon is disabled.

By clicking the icon, user can setup the parameters of each coresense.

4.23.1 CORESENSE SETUP PAGE

4.24 REAL TIME CLOCK

Switch off and on the iProRACK to allow the modifications take place.

4.25 CONF IP &	MODBUS ADDRESS
Touch the value to set: - IP address - Modbus address	IP address 192 . 168 . 0 . 250 ModBus address 1 Modifications will be actual at next reboot.

Switch off and on the iProRACK to allow the modifications take place.

4.26 CONF FILE MANAGEMENT

The CONF FILE MANAGEMENT page, allow to:

- Save a map as **Default**, useful when a good configuration has been set. Once saved as **Default**, this map can be loaded to restore the configuration.
- Suggestion: after the commissioning save the Actual map in the Default map
- Actual is the current parameter map.
- Back up is used as copy of the Actual. In case of corruption of Actual file il will be used to restore current configuration

default_10D Conf File Management	Go to page Default_10d Conf File Management.	backup_10D Conf File Management	Go to page Backup_10d Conf File Management.
actual_10D Conf File Management	Go to page Actual_10d Conf File Management.	Password	Go to PASSWORD No password protected Password protected

4.26.1 Default 10d Conf File

4.26.2 Backup_10d Conf File

4.27 ENERGY METER STATUS

In case the Energy Meter EPM is connected this stage is available

4.27.1 Energy Meter Status Page

4.28 DEVICE STATUS

In this page is shown the status of the devices, like:

- Expansion board IPX206D or IPX215D
 - Stepper Valve XEV20D
 - Coresenses

Touch a box to see further details

4.29 ENERGY SAVING

Enable/Disable energy saving of Circuit 1 Gray: energy saving is disabled Green: energy saving is enabled

Enable/Disable energy saving of Circuit 2 Gray: energy saving is disabled Green: energy saving is enabled

4.30 COOLING CONTROL

This page is designed to manage the HVAC cooling feature, see paragraph 21.

4.31 SET POINTS

This page allows direct access to the main set points of the rack. They can be seen and changed.

They are:

- SETC1 = Pressure/temp. set point of Circuit 1: MT
- SETF1 = Temp. set point of gas cooler
- SETC2 = Pressure/temp. set point of Circuit 2: LT
- SETP = Pressure set point of parallel compressors

5 CONFIGURATION SUB-MENU

The configuration sub menus contained in the parameter list, allow the user to configure the iProRACK, according to the kind of racks.

5.1 Parameters for iProRACK I/O configuration

All the I/O configurations are stored in 4 parameter groups:

- DIC (IPR251D: 43 parameters)
- DOC (IPR251D: 36 parameters);
- AOC (IPR251D: 6 parameters);
- AIC (IPR251D: 27 parameters);

For digital I/Os, there is a double configuration (active with open contact or with closed contact).

5.1.1 DIGITAL-INPUTS (parameters DIC1- DIC43)

Parameter	Description	IPRC215D	IPX206D	IPX215D
DIC1	Configuration Digital Input 1	х		
DIC 2	Configuration Digital Input 2	Х		
DIC 3	Configuration Digital Input 3	Х		
DIC 4	Configuration Digital Input 4	Х		
DIC 5	Configuration Digital Input 5	Х		
DIC 6	Configuration Digital Input 6	Х		
DIC 7	Configuration Digital Input 7	х		
DIC 8	Configuration Digital Input 8	Х		
DIC 9	Configuration Digital Input 9	Х		
DIC 10	Configuration Digital Input 10	Х		
DIC 11	Configuration Digital Input 11	Х		
DIC 12	Configuration Digital Input 12	Х		
DIC 13	Configuration Digital Input 13	х		
DIC 14	Configuration Digital Input 14	х		
DIC 15	Configuration Digital Input 15	х		
DIC 16	Configuration Digital Input 16	х		
DIC 17	Configuration Digital Input 17	х		
DIC 18	Configuration Digital Input 18	х		
DIC 19	Configuration Digital Input 19	х		
DIC 20	Configuration Digital Input 20	х		
DIC 21	Configuration Digital Input 21		х	
DIC 22	Configuration Digital Input 22		х	
DIC 23	Configuration Digital Input 23		х	
DIC 24	Configuration Digital Input 24			х
DIC 25	Configuration Digital Input 25			х
DIC 26	Configuration Digital Input 26			х
DIC 27	Configuration Digital Input 27			х
DIC 28	Configuration Digital Input 28			х
DIC 29	Configuration Digital Input 29			х
DIC 30	Configuration Digital Input 30			x
DIC 31	Configuration Digital Input 31			х
DIC 32	Configuration Digital Input 32			х
DIC 33	Configuration Digital Input 33			X
DIC 34	Configuration Digital Input 34			х
DIC 35	Configuration Digital Input 35			х
DIC 36	Configuration Digital Input 36			X
DIC 37	Configuration Digital Input 37			х

Parameter	Description	IPRC215D	IPX206D	IPX215D
DIC 38	Configuration Digital Input 38			х
DIC 39	Configuration Digital Input 39			х
DIC 40	Configuration Digital Input 40			х
DIC 41	Configuration Digital Input 41			х
DIC 42	Configuration Digital Input 42			х
DIC 43	Configuration Digital Input 43			х

DIGITAL INPUTS CONFIGURATION DIC1-DIC43

"c" the digital input is activated by closing the contacts

"o" the digital input is activated by opening the contacts;

The next number indicates the Input function as described above.

Values

- 0 Not used
- 10 Compressor 1 oil pressostate Circuit 1
- 1c Compressor 1 oil pressostate Circuit 1
- 20 Compressor Safety pressostate 1 Circuit 1
- 2c Compressor Safety pressostate 1 Circuit 1
- 30 Thermal Safety Compressor 1 Circuit 1
- 3c Thermal Safety Compressor 1 Circuit 1
- 40 Compressor oil pressostate 2 Circuit 1
- 4c Compressor oil pressostate 2 Circuit 1
- 50 Compressor Safety pressostate 2 Circuit 1
- 5c Compressor Safety pressostate 2 Circuit 1 6o Thermal Safety Compressor 2 Circuit 1
- 6 Thermal Safety Compressor 2 Circuit 1
- 70 Compressor oil pressostate 3 Circuit 1
- 7c Compressor oil pressostate 3 Circuit 1
- 80 Compressor Safety pressostate 3 Circuit 1
- 8c Compressor Safety pressostate 3 Circuit 1
- 90 Thermal Safety Compressor 3 Circuit 1 9c Thermal Safety Compressor 3 Circuit 1
- 10o Compressor oil pressostate 4 Circuit 1
- 10c Compressor oil pressostate 4 Circuit 1
- 11o Compressor Safety pressostate 4 Circuit 1
- 11c Compressor Safety pressostate 4 Circuit 1 12o Thermal Safety Compressor 4 Circuit 1
- 12c Thermal Safety Compressor 4 Circuit 1
- 130 Compressor oil pressostate 5 Circuit 1
- 130 Compressor oil pressostate 5 Circuit 1
- 13c Compressor oil pressostate 5 Circuit 1 14o Compressor Safety pressostate 5 Circuit 1
- 14c Compressor Safety pressostate 5 Circuit 1
- 150 Thermal Safety Compressor 5 Circuit 1
- 15c Thermal Safety Compressor 5 Circuit 1
- 160 Compressor oil pressostate 6 Circuit 1
- 16c Compressor oil pressostate 6 Circuit 1
- 170 Compressor Safety pressostate 6 Circuit 1
- 17c Compressor Safety pressostate 6 Circuit 1
- 180 Thermal Safety Compressor 6 Circuit 1 18c Thermal Safety Compressor 6 Circuit 1
- 190 Compressor oil pressostate 7 Circuit 1
- 19c Compressor oil pressostate 7 Circuit 1
- 200 Compressor Safety pressostate7 Circuit 1
- 20c Compressor Safety pressostate7 Circuit 1
- 210 Thermal Safety Compressor 7 Circuit 1
- 21c Thermal Safety Compressor 7 Circuit 1
- 220 Compressor oil pressostate 8 Circuit 1

22c Compressor oil pressostate 8 Circuit 1 23o Compressor Safety pressostate 8 Circuit 1 23c Compressor Safety pressostate 8 Circuit 1 24o Thermal Safety Compressor 8 Circuit 1 24c Thermal Safety Compressor 8 Circuit 1 250 Compressor oil pressostate 9 Circuit 1 25c Compressor oil pressostate 9 Circuit 1 260 Compressor Safety pressostate9 Circuit 1 26c Compressor Safety pressostate9 Circuit 1 270 Thermal Safety Compressor 9 Circuit 1 27c Thermal Safety Compressor 9 Circuit 1 280 Compressor oil pressostate 10 Circuit 1 28c Compressor oil pressostate 10 Circuit 1 29o Compressor Safety pressostate 10 Circuit 1 29c Compressor Safety pressostate 10 Circuit 1 30o Thermal Safety Compressor 10 Circuit 1 30c Thermal Safety Compressor 10 Circuit 1 310 Compressor oil pressostate 11 Circuit 1 31c Compressor oil pressostate 11 Circuit 1 32o Compressor Safety pressostate11 Circuit 1 32c Compressor Safety pressostate11 Circuit 1 33o Thermal Safety Compressor 11 Circuit 1 33c Thermal Safety Compressor 11 Circuit 1 34o Compressor oil pressostate 12 Circuit 1 34c Compressor oil pressostate 12 Circuit 1 350 Compressor Safety pressostate12 Circuit 1 35c Compressor Safety pressostate12 Circuit 1 360 Thermal Safety Compressor 12 Circuit 1 36c Thermal Safety Compressor 12 Circuit 1 370 Compressor oil pressostate 1 Circuit 2 37c Compressor oil pressostate 1 Circuit 2 38o Compressor Safety pressostate 1 Circuit 2 38c Compressor Safety pressostate 1 Circuit 2 39o Thermal Safety Compressor 1 Circuit 2 39c Thermal Safety Compressor 1 Circuit 2 40o Compressor oil pressostate 2 Circuit 2 40c Compressor oil pressostate 2 Circuit 2 410 Compressor Safety pressostate 2 Circuit 2 41c Compressor Safety pressostate 2 Circuit 2 420 Thermal Safety Compressor 2 Circuit 2 42c Thermal Safety Compressor 2 Circuit 2 430 Compressor oil pressostate 3 Circuit 2 43c Compressor oil pressostate 3 Circuit 2 44o Compressor Safety pressostate3 Circuit 2 44c Compressor Safety pressostate3 Circuit 2 45o Thermal Safety Compressor 3 Circuit 2 45c Thermal Safety Compressor 3 Circuit 2 460 Compressor oil pressostate 4 Circuit 2 46c Compressor oil pressostate 4 Circuit 2 47o Compressor Safety pressostate 4 Circuit 2 47c Compressor Safety pressostate 4 Circuit 2 48o Thermal Safety Compressor 4 Circuit 2 48c Thermal Safety Compressor 4 Circuit 2 49o Compressor oil pressostate 5 Circuit 2 49c Compressor oil pressostate 5 Circuit 2 50o Compressor Safety pressostate 5 Circuit 2 50c Compressor Safety pressostate 5 Circuit 2 51o Thermal Safety Compressor 5 Circuit 2 51c Thermal Safety Compressor 5 Circuit 2 520 Compressor oil pressostate 6 Circuit 2 52c Compressor oil pressostate 6 Circuit 2 53o Compressor Safety pressostate6 Circuit 2 53c Compressor Safety pressostate6 Circuit 2

54o Thermal Safety Compressor 6 Circuit 2 54c Thermal Safety Compressor 6 Circuit 2 550 Compressor oil pressostate 7 Circuit 2 55c Compressor oil pressostate 7 Circuit 2 560 Compressor Safety pressostate 7 Circuit 2 56c Compressor Safety pressostate 7 Circuit 2 570 Thermal Safety Compressor 7 Circuit 2 57c Thermal Safety Compressor 7 Circuit 2 580 Compressor oil pressostate 8 Circuit 2 58c Compressor oil pressostate 8 Circuit 2 590 Compressor Safety pressostate8 Circuit 2 59c Compressor Safety pressostate8 Circuit 2 60o Thermal Safety Compressor 8 Circuit 2 60c Thermal Safety Compressor 8 Circuit 2 610 Compressor oil pressostate 9 Circuit 2 61c Compressor oil pressostate 9 Circuit 2 620 Compressor Safety pressostate 9 Circuit 2 62c Compressor Safety pressostate 9 Circuit 2 63o Thermal Safety Compressor 9 Circuit 2 63c Thermal Safety Compressor 9 Circuit 2 64o Compressor oil pressostate 10 Circuit 2 64c Compressor oil pressostate 10 Circuit 2 650 Compressor Safety pressostate 10 Circuit 2 65c Compressor Safety pressostate 10 Circuit 2 66o Thermal Safety Compressor 10 Circuit 2 66c Thermal Safety Compressor 10 Circuit 2 670 Compressor oil pressostate 11 Circuit 2 67c Compressor oil pressostate 11 Circuit 2 68o Compressor Safety pressostate 11 Circuit 2 68c Compressor Safety pressostate 11 Circuit 2 69o Thermal Safety Compressor 11 Circuit 2 69c Thermal Safety Compressor 11 Circuit 2 70o Compressor oil pressostate 12 Circuit 2 70c Compressor oil pressostate 12 Circuit 2 71o Compressor Safety pressostate 12 Circuit 2 71c Compressor Safety pressostate 12 Circuit 2 720 Thermal Safety Compressor 12 Circuit 2 72c Thermal Safety Compressor 12 Circuit 2 73o Fan safety1 Circuit 1 73c Fan safety1 Circuit 1 74o Fan safety2 Circuit 1 74c Fan safetv2 Circuit 1 750 Fan safety3 Circuit 1 75c Fan safetv3 Circuit 1 760 Fan safetv4 Circuit 1 76c Fan safety4 Circuit 1 77o Fan safety5 Circuit 1 77c Fan safetv5 Circuit 1 78o Fan safety6 Circuit 1 78c Fan safety6 Circuit 1 79o Fan safety7 Circuit 1 79c Fan safety7 Circuit 1 800 Fan safety8 Circuit 1 80c Fan safety8 Circuit 1 810 Fan safety9 Circuit 1 81c Fan safety9 Circuit 1 820 Fan safety10 Circuit 1 82c Fan safety10 Circuit 1 83o Fan safety11 Circuit 1 83c Fan safetv11 Circuit 1 84o Fan safetv12 Circuit 1 84c Fan safety12 Circuit 1 850 Fan safetv1 Circuit 2

85c Fan safety1 Circuit 2 860 Fan safety2 Circuit 2 86c Fan safety2 Circuit 2 870 Fan safety3 Circuit 2 87c Fan safety3 Circuit 2 880 Fan safety4 Circuit 2 88c Fan safetv4 Circuit 2 890 Fan safety5 Circuit 2 89c Fan safety5 Circuit 2 900 Fan safetv6 Circuit 2 90c Fan safety6 Circuit 2 910 Fan safety7 Circuit 2 91c Fan safety7 Circuit 2 920 Fan safety8 Circuit 2 92c Fan safety8 Circuit 2 930 Fan safety9 Circuit 2 93c Fan safety9 Circuit 2 94o Fan safety10 Circuit 2 94c Fan safety10 Circuit 2 950 Fan safety11 Circuit 2 95c Fan safety11 Circuit 2 960 Fan safety12 Circuit 2 96c Fan safetv12 Circuit 2 970 Heat reclaim 1 (see the note here below) 97c Heat reclaim 1 980 Heat reclaim 2 98c Heat reclaim 2 990 High pressure Circuit 1 99c High pressure Circuit 1 1000 High pressure Circuit 2 100c High pressure Circuit 2 101o-Low pressure Circuit 1 101c Low pressure Circuit 1 1020 Low pressure Circuit 2 102c Low pressure Circuit 2 103o ON/OFF (see the note here below) 103c ON/OFF 1040 Not Used 104c Not Used 1050 Energy saving Circuit 1 105c Energy saving Circuit 1 1060 Energy saving Circuit 2 106c Energy saving Circuit 2 1070 ON/OFF Circuit 1 107c ON/OFF Circuit 1 1080 ON/OFF Circuit 2 108c ON/OFF Circuit 2 1090 Liquid level Circuit 1 109c Liquid level Circuit 1 1100 Liquid level Circuit 2 110c Liquid level Circuit 2 1110 Disable CRO Circuit 1 (see the note here below) 111c Disable CRO Circuit 1 1120 Disable CRO Circuit 2 112c Disable CRO Circuit 2 1130 Disable Dynamic Setpoint Circuit 1 113c Disable Dynamic Setpoint Circuit 1 1140 Disable Dynamic Setpoint Circuit 2 114c Disable Dynamic Setpoint Circuit 2 1150 Oil of compressor with Inverter suction Circuit 1 115c Oil of compressor with Inverter suction Circuit 1 1160 Safety of Compressor with Inverter Suction Circuit 1 116c Safety of Compressor with Inverter Suction Circuit 1
1170 Thermal Safety of Compressor with Inverter suction Circuit 1 117c Thermal Safety of Compressor with Inverter suction Circuit 1 1180 Oil of compressor with Inverter suction Circuit 2 118c Oil of compressor with Inverter suction Circuit 2 119o Safety of Compressor with Inverter Suction Circuit 2 119c Safety of Compressor with Inverter Suction Circuit 2 1200 Thermal Safety of Compressor with Inverter suction Circuit 2 120c Thermal Safety of Compressor with Inverter suction Circuit 2 1210 Safety Inverter condenser Circuit 1 121c Safety Inverter condenser Circuit 1 1220 Safety Inverter condenser Circuit 2 122c Safety Inverter condenser Circuit 2 123o Safety Input Coresense 1: it stops the compressor related to the Coresense 1 123c Safety Input Coresense 1: it stops the compressor related to the Coresense 1 1240 Safety Input Coresense 2: it stops the compressor related to the Coresense 2 124c Safety Input Coresense 2: it stops the compressor related to the Coresense 2 1250 Safety Input Coresense 3: it stops the compressor related to the Coresense 3 125c Safety Input Coresense 3: it stops the compressor related to the Coresense 3 1260 Safety Input Coresense 4: it stops the compressor related to the Coresense 4 126c Safety Input Coresense 4: it stops the compressor related to the Coresense 4 1270 Safety Input Coresense 5: it stops the compressor related to the Coresense 5 127c Safety Input Coresense 5: it stops the compressor related to the Coresense 5 1280 Safety Input Coresense 6: it stops the compressor related to the Coresense 6 128c Safety Input Coresense 6: it stops the compressor related to the Coresense 6 1290 Safety Input Coresense 7: it stops the compressor related to the Coresense 7 129c Safety Input Coresense 7: it stops the compressor related to the Coresense 7 1300 Safety Input Coresense 8: it stops the compressor related to the Coresense 8 130c Safety Input Coresense 8: it stops the compressor related to the Coresense 8 1310 Safety Input Coresense 9: it stops the compressor related to the Coresense 9 131c Safety Input Coresense 9: it stops the compressor related to the Coresense 9 1320 Safety Input Coresense 10: it stops the compressor related to the Coresense 10 132c Safety Input Coresense 10: it stops the compressor related to the Coresense 10 1330 Safety Input Coresense 11: it stops the compressor related to the Coresense 11 133c Safety Input Coresense 11: it stops the compressor related to the Coresense 11 134o Safety Input Coresense 12: it stops the compressor related to the Coresense 12 134c Safety Input Coresense 12: it stops the compressor related to the Coresense 12 1350 Safety Input Coresense 13: it stops the compressor related to the Coresense 13 135c Safety Input Coresense 13: it stops the compressor related to the Coresense 13 136o Safety Input Coresense 14: it stops the compressor related to the Coresense 14 136c Safety Input Coresense 14: it stops the compressor related to the Coresense 14 1370 Safety Input Coresense 15: it stops the compressor related to the Coresense 15 137c Safety Input Coresense 15: it stops the compressor related to the Coresense 15 1380 Inverter suction 1 safety 138c Inverter suction 1 safety 1390 Inverter suction 2 safety 139c Inverter suction 2 safety 1400 Inverter 2 safety - circuit 1 140c Inverter 2 safety - circuit 1 1410 Inverter 2 safety - circuit 2 141c Inverter 2 safety – circuit 2 1420 Start AUX output 1 142c Start AUX output 1 143o Start AUX output 2 143c Start AUX output 2 1440 Start AUX output 3 144c Start AUX output 3 1450 Start AUX output 4 145c Start AUX output 4 1460 Start AUX output 5 146c Start AUX output 5 1470 Start AUX output 6 147c Start AUX output 6 1480 Start AUX output 7

148c Start AUX output 7 149o Start AUX output 8 149c Start AUX output 8 1500 Burst disc alarm 150c Burst disc alarm 1510 Phase fail alarm 151c Phase fail alarm 1520 External alarm 1 152c External alarm 1 1530 External alarm 2 153c External alarm 2 154o External alarm 3 154c External alarm 3 1550 External alarm 4 155c External alarm 4 1560 H-R2 pump flow switch 156c H-R2 pump flow switch 1570 H-R2 pump thermal protection 157c H-R2 pump thermal protection 1580 Thermal Safety De-Superheater 1 158c Thermal Safety De-Superheater 1 1590 Thermal Safety De-Superheater 2 159c Thermal Safety De-Superheater 2 1600 Thermal Safety De-Superheater 3 160c Thermal Safety De-Superheater 3 1610 Low oil level in oil seperator circuit 1 161c Low oil level in oil seperator circuit 1 1620 High oil level in oil seperator circuit 1 162c High oil level in oil seperator circuit 1 1630 Low oil level in oil seperator circuit 2 163c Low oil level in oil seperator circuit 2 1640 Change oil separator switch 164c Change oil separator switch 1650 High oil separator lockout 165c High oil separator lockout 1660 Rack exhaust fan 166c Rack exhaust fan 1670 Break glass switch 167c Break glass switch 1680 High oil level in oil seperator circuit 2 168c High oil level in oil seperator circuit 2 1690 Silent function circuit 1 169c Silent function circuit 1 1700 Silent function circuit 2 170c Silent function circuit 2 1730 Parallel compression- Compressor 1 oil pressostate 173c Parallel compression- Compressor 1 oil pressostate 1740 Parallel compression- Compressor 1 Safety pressostate 174c Parallel compression- Compressor 1 Safety pressostate 1750 Parallel compression- Compressor 1 Thermal Safety 175c Parallel compression- Compressor 1 Thermal Safety 1760 Parallel compression- Compressor 2 oil pressostate 176c Parallel compression - Compressor 2 oil pressostate 1770 Parallel compression- Compressor 2 Safety pressostate 177c Parallel compression- Compressor 2 Safety pressostate 1780 Parallel compression- Compressor 2 Thermal Safety 178c Parallel compression- Compressor 2 Thermal Safety 1790 Parallel compression- Compressor 3 oil pressostate 179c Parallel compression- Compressor 3 oil pressostate 1800 Parallel compression- Compressor 3 Safety pressostate 180c Parallel compression- Compressor 3 Safety pressostate 1810 Parallel compression- Compressor 3 Thermal Safety 181c Parallel compression- Compressor 3 Thermal Safety

1820 Parallel compression- Frequency compressor, oil pressostate 182c Parallel compression- Frequency compressor, oil pressostate 1830 Parallel compression- Frequency compressor. Safety pressostate 183c Parallel compression- Frequency compressor, Safety pressostate 1840 Parallel compression- Frequency compressor, Thermal Safety 184c Parallel compression- Frequency compressor, Thermal Safety 1850 Parallel compression- Inverter Safety 185c Parallel compression- Inverter Safety 1860 Low oil level in oil receiver circuit 1 186c Low oil level in oil receiver circuit 1 1870 Low oil level in oil receiver circuit 2 187c Low oil level in oil receiver circuit 2 1880 Adiabatic spray alarm 188c Adiabatic sprav alarm 1890 HVAC control request 189c HVAC control request 1900 HVAC pump flow switch HVAC pump flow switch 190c 1910 HVAC pump thermal protection 191c HVAC pump thermal protection 1920 Suction receiver high level 192c Suction receiver high level 1930 Suction receiver low level 193c Suction receiver low level 1940 Vapour Ejector control request 194c Vapour Ejector control request 1950 Full Suction receiver 195c Full Suction receiver 1960 Comp.1 Circ1 in maintenance 196c Comp.1 Circ1 in maintenance 1970 Comp.2 Circ1 in maintenance 197c Comp.2 Circ1 in maintenance 1980 Comp.3 Circ1 in maintenance 198c Comp.3 Circ1 in maintenance 1990 Comp.4 Circ1 in maintenance 199c Comp.4 Circ1 in maintenance 2000 Comp.5 Circ1 in maintenance 200c Comp.5 Circ1 in maintenance 2010 Comp.6 Circ1 in maintenance 201c Comp.6 Circ1 in maintenance 2020 Comp.7 Circ1 in maintenance 202c Comp.7 Circ1 in maintenance Comp.8 Circ1 in maintenance 2030 203c Comp.8 Circ1 in maintenance 2040 Comp.9 Circ1 in maintenance 204c Comp.9 Circ1 in maintenance 2050 Comp.10 Circ1 in maintenance 205c Comp.10 Circ1 in maintenance 2060 Comp.11 Circ1 in maintenance 206c Comp.11 Circ1 in maintenance 2070 Comp.12 Circ1 in maintenance 207c Comp.12 Circ1 in maintenance 2080 Comp.1 Circ2 in maintenance 208c Comp.1 Circ2 in maintenance 2090 Comp.2 Circ2 in maintenance 209c Comp.2 Circ2 in maintenance

2100 Comp.3 Circ2 in maintenance 210c Comp.3 Circ2 in maintenance 2110 Comp.4 Circ2 in maintenance 211c Comp.4 Circ2 in maintenance 2120 Comp.5 Circ2 in maintenance 212c Comp.5 Circ2 in maintenance 2130 Comp.6 Circ2 in maintenance 213c Comp.6 Circ2 in maintenance 2140 Comp.7 Circ2 in maintenance 214c Comp.7 Circ2 in maintenance 2150 Comp.8 Circ2 in maintenance 215c Comp.8 Circ2 in maintenance 2160 Comp.9 Circ2 in maintenance 216c Comp.9 Circ2 in maintenance 2170 Comp.10 Circ2 in maintenance 217c Comp.10 Circ2 in maintenance 2180 Comp.11 Circ2 in maintenance 218c Comp.11 Circ2 in maintenance 2190 Comp.12 Circ2 in maintenance 219c Comp.12 Circ2 in maintenance 2200 Comp.1 PC in maintenance 220c Comp.1 PC in maintenance 2210 Comp.2 PC in maintenance 221c Comp.2 PC in maintenance 2220 Comp.3 PC in maintenance 222c Comp.3 PC in maintenance 2230 Inverter Circ1 in maintenance 223c Inverter Circ1 in maintenance Inverter Circ2 in maintenance 2240 224c Inverter Circ2 in maintenance 2250 Inverter PC in maintenance 225c Inverter PC in maintenance 2260 High flash tank liquid level Circuit 1 226c High flash tank liquid level Circuit 1 Oil of inverter compressor 2 suction Circuit 1 2270 Oil of inverter compressor 2 suction Circuit 1 227c 2280 Safety pressostate of inverter compressor 2 Suction Circuit 1 228c Safety pressostate of inverter compressor 2 Suction Circuit 1 2290 Thermal Safety of Inverter compressor2suction Circuit 1 229c Thermal Safety of Inverter compressor2 suction Circuit 1 2300 Oil of inverter compressor 2 suction Circuit 2 230c Oil of inverter compressor 2 suction Circuit 2 2310 Safety pressostate of inverter compressor 2 Suction Circuit 2 231c Safety pressostate of inverter compressor 2 Suction Circuit 2 2320 Thermal Safety of inverter compressor 2 suction Circuit 2 232c Thermal Safety of inverter compressor 2 suction Circuit 2 2330 Oil of inverter 2 compressor Parallel compressor 233c Oil of inverter 2 compressor Parallel compressor 2340 Safety pressostate of inverter 2 compressor Parallel compressor 234c Safety pressostate of inverter 2 compressor Parallel compressor 2350 Thermal Safety of inverter 2 compressor Parallel compressor 235c Thermal Safety of inverter 2 compressor Parallel compressor 2360 Parallel compressor inverter 2 safety 236c Parallel compressor inverter 2 safety 2370 Parallel compression- Compressor 4 oil pressostate Parallel compression- Compressor 4 oil pressostate 237c 2380 Parallel compression- Compressor 4 Safety pressostate 238c Parallel compression- Compressor 4 Safety pressostate

- 2390 Parallel compression- Compressor 4 Thermal Safety
- 239c Parallel compression- Compressor 4 Thermal Safety
- 2400 Parallel compression- Compressor 5 oil pressostate
- 240c Parallel compression- Compressor 5 oil pressostate
- 2410 Parallel compression- Compressor 5 Safety pressostate 241c Parallel compression- Compressor 5 Safety pressostate
- 241c Parallel compression- Compressor 5 Safety pressostate 2420 Parallel compression- Compressor 5 Thermal Safety
- 2420 Parallel compression- Compressor 5 Thermal Safety 242c Parallel compression- Compressor 5 Thermal Safety

Note: if both 103 and 111 are present, only the 103 is used, the 111 is ignored. The same for

103 and 112. <u>Note</u>: if there is a heat reclaim DI active, the corresponding relay is activated (DO119-DO120). The set point of the condenser circuit1 has to be summed to RC33 in case the HR1 is enabled

(all the conditions for HR1 are met), set point = setCircuit + dyn + ES + RC33.

Note: CRO function is only used for evaporator set point.

If when the Disable CRO Circuit DI is not active (e.g. Circuit 1)

Instead use the formula set point = setCircuit1 + dyn + ES

Use the CRO value sent by xWeb, set point = CRO.

There are 2 ways for coming back to set point = setCiircuit1 + dyn + ES

1) The "Disable CRO Circuit 1" is enabled.

2) If the "Disable CRO Circuit 1" is still disabled, after a timeout of 5mins.

In fact, the xWeb every minute sends again the same CRO command.

Note: the silent function is only for fans.

5.1.2 DIGITAL-OUTPUTS (parameters DOC1- DOC36)

Parameter	Description	IPRC215D	IPX206D/ IPX106D	IPX215D/ IPX115D
DOC1	Configuration Digital Output 1	x		
DOC 2	Configuration Digital Output 2	х		
DOC 3	Configuration Digital Output 3	х		
DOC 4	Configuration Digital Output 4	х		
DOC 5	Configuration Digital Output 5	х		
DOC 6	Configuration Digital Output 6	х		
DOC 7	Configuration Digital Output 7	х		
DOC 8	Configuration Digital Output 8	х		
DOC 9	Configuration Digital Output 9	х		
DOC 10	Configuration Digital Output 10	х		
DOC 11	Configuration Digital Output 11	х		
DOC 12	Configuration Digital Output 12	х		
DOC 13	Configuration Digital Output 13	х		
DOC 14	Configuration Digital Output 14	х		
DOC 15	Configuration Digital Output 15	х		
DOC 16	Configuration Digital Output 16		х	
DOC 17	Configuration Digital Output 17		х	
DOC 18	Configuration Digital Output 18		х	
DOC 19	Configuration Digital Output 19		х	
DOC 20	Configuration Digital Output 20		х	
DOC 21	Configuration Digital Output 21		х	
DOC 22	Configuration Digital Output 22			х
DOC 23	Configuration Digital Output 23			х
DOC 24	Configuration Digital Output 24			х
DOC 25	Configuration Digital Output 25			х
DOC 26	Configuration Digital Output 26			х
DOC 27	Configuration Digital Output 27			х
DOC 28	Configuration Digital Output 28			х
DOC 29	Configuration Digital Output 29			х
DOC 30	Configuration Digital Output 30			х
DOC 31	Configuration Digital Output 31			x
DOC 32	Configuration Digital Output 32			х
DOC 33	Configuration Digital Output 33			х
DOC 34	Configuration Digital Output 34			х
DOC 35	Configuration Digital Output 35			х
DOC 36	Configuration Digital Output 36			х

Values

0	Not used
10	Inverter 1 Suction Circuit 1
1c	Inverter 1 Suction Circuit 1
20	Inverter 2 Suction Circuit 1
2c	Inverter 2 Suction Circuit 1
30	Inverter 1 Suction Circuit 2
3c	Inverter 1 Suction Circuit 2
4o	Inverter 2 Suction Circuit 2
4c	Inverter 2 Suction Circuit 2
50	Inverter Condenser Circuit 1
5c	Inverter Condenser Circuit 1
60	Inverter Condenser Circuit 2
6c	Inverter Condenser Circuit 2
70	Compressor 1 Circuit 1

7c	Compressor 1 Circuit 1
80	Step n° 1 Compressor 1 Circuit 1
8c	Step n° 1 Compressor 1 Circuit 1
90	Step n° 2 Compressor 1 Circuit 1
9c	Step n° 2 Compressor 1 Circuit 1
100	Step n° 3 Compressor 1 Circuit 1
10C	Step n° 3 Compressor 1 Circuit 1
110	Compressor 2 Circuit 1
120	Stop p ^o 1 Compressor 2 Circuit 1
120	Step n° 1 Compressor 2 Circuit 1
130	Step n° 2 Compressor 2 Circuit 1
13c	Step n° 2 Compressor 2 Circuit 1
140	Step n° 3 Compressor 2 Circuit 1
14c	Step n° 3 Compressor 2 Circuit 1
150	Compressor 3 Circuit 1
15c	Compressor 3 Circuit 1
160	Step n° 1 Compressor 3 Circuit 1
16c	Step n° 1 Compressor 3 Circuit 1
17o	Step n° 2 Compressor 3 Circuit 1
17c	Step n° 2 Compressor 3 Circuit 1
18o	Step n° 3 Compressor 3 Circuit 1
18c	Step n° 3 Compressor 3 Circuit 1
190	Compressor 4 Circuit 1
19c	Compressor 4 Circuit 1
200	Step n° 1 Compressor 4 Circuit 1
20c	Step n° 1 Compressor 4 Circuit 1
210	Step n° 2 Compressor 4 Circuit 1
21c	Step n° 2 Compressor 4 Circuit 1
220	Step n° 3 Compressor 4 Circuit 1
22c	Step n° 3 Compressor 4 Circuit 1
230	Compressor 5 Circuit 1
23c	Compressor 5 Circuit 1
240	Step n° 1 Compressor 5 Circuit 1
24c	Step n° 1 Compressor 5 Circuit 1
250	Step n° 2 Compressor 5 Circuit 1
250	Step nº 2 Compressor 5 Circuit 1
260	Step nº 3 Compressor 5 Circuit 1
200	Step In 3 Compressor 5 Circuit 1
270	Compressor 6 Circuit 1
280	Stop p ^o 1 Compressor 6 Circuit 1
280	Step nº 1 Compressor 6 Circuit 1
200	Step nº 2 Compressor 6 Circuit 1
290	Step n° 2 Compressor 6 Circuit 1
300	Step n° 3 Compressor 6 Circuit 1
30c	Step n° 3 Compressor 6 Circuit 1
310	Compressor 1 Circuit 2
31c	Compressor 1 Circuit 2
320	Step n° 1 Compressor 1 Circuit 2
32c	Step n° 1 Compressor 1 Circuit 2
330	Step n° 2 Compressor 1 Circuit 2
33c	Step n° 2 Compressor 1 Circuit 2
340	Step n° 3 Compressor 1 Circuit 2
34c	Step n° 3 Compressor 1 Circuit 2
350	Compressor 2 Circuit 2
35c	Compressor 2 Circuit 2
360	Step n° 1 Compressor 2 Circuit 2
36c	Step n° 1 Compressor 2 Circuit 2
370	Step n° 2 Compressor 2 Circuit 2
37c	Step n° 2 Compressor 2 Circuit 2
380	Step n° 3 Compressor 2 Circuit 2
380	Step n° 3 Compressor 2 Circuit 2

390	Compressor 3 Circuit 2
39c	Compressor 3 Circuit 2
40o	Step n° 1 Compressor 3 Circuit 2
40c	Step n° 1 Compressor 3 Circuit 2
41o	Step n° 2 Compressor 3 Circuit 2
41c	Step n° 2 Compressor 3 Circuit 2
42o	Step n° 3 Compressor 3 Circuit 2
42c	Step n° 3 Compressor 3 Circuit 2
430	Compressor 4 Circuit 2
43c	Compressor 4 Circuit 2
440	Step nº 1 Compressor 4 Circuit 2
44c	Step n° 1 Compressor 4 Circuit 2
450	Step n° 2 Compressor 4 Circuit 2
450	Step n° 2 Compressor 4 Circuit 2
460	Step n° 3 Compressor 4 Circuit 2
460	Step n° 3 Compressor 4 Circuit 2
470	Compressor 5 Circuit 2
47c	Compressor 5 Circuit 2
480	Step p ^o 1 Compressor 5 Circuit 2
480	Step nº 1 Compressor 5 Circuit 2
400	Stop nº 2 Compressor 5 Circuit 2
400	Stop nº 2 Compressor 5 Circuit 2
490	Step II 2 Compressor 5 Circuit 2
500	Step n° 3 Compressor 5 Circuit 2
510	Compressor 6 Circuit 2
510	Compressor & Circuit 2
510	Stop p ^o 1 Compressor 6 Circuit 2
520	Step nº 1 Compressor 6 Circuit 2
520	Step 11 1 Compressor 6 Circuit 2
530	Step nº 2 Compressor 6 Circuit 2
530	Step nº 2 Compressor 6 Circuit 2
540	Step II 3 Compressor 6 Circuit 2
540	Step II' 3 Compressor 6 Circuit 2
550	Compressor 7 Circuit 1
550	Compressor 7 Circuit 1
500	Compressor 8 Circuit 1
500	Compressor & Circuit 1
570	Compressor 9 Circuit 1
570	Compressor 9 Circuit 1
580	
580	Compressor 10 Circuit 1
590	Compressor 11 Circuit 1
590	Compressor 11 Circuit 1
600	Compressor 12 Circuit 1
60C	Compressor 12 Circuit 1
610	Compressor 7 Circuit 2
610	Compressor / Circuit 2
620	Compressor 8 Circuit 2
62C	Compressor 8 Circuit 2
630	Compressor 9 Circuit 2
630	Compressor 9 Circuit 2
640	Compressor 10 Circuit 2
64c	Compressor 10 Circuit 2
650	Compressor 11 Circuit 2
000	Compressor 11 Circuit 2
000	Compressor 12 Circuit 2
000	Compressor 12 Circuit 2
6/0	Fan 1 Circuit 1
6/0	Fan 1 Circuit 1
680	Fan 2 Circuit 1
680	Fan 2 Circuit 1
690	Fan 3 Circuit 1
69c	Fan 3 Circuit 1
/00	Fan 4 Circuit 1

70c	Fan 4 Circuit 1
710	Fan 5 Circuit 1
71c	Fan 5 Circuit 1
720	Fan 6 Circuit 1
72c	Fan 6 Circuit 1
730	Fan 7 Circuit 1
73c	Fan 7 Circuit 1
740	Fan 8 Circuit 1
74c	Fan 8 Circuit 1
750	Fan 9 Circuit 1
75c	Fan 9 Circuit 1
760	Fan 10 Circuit 1
76c	Fan 10 Circuit 1
770	Fan 11 Circuit 1
77c	Fan 11 Circuit 1
780	Fan 12 Circuit 1
78c	Fan 12 Circuit 1
790	Fan 1 Circuit 2
79c	Fan 1 Circuit 2
800	Fan 2 Circuit 2
80c	Fan 2 Circuit 2
810	Fan 3 Circuit 2
81c	Fan 3 Circuit 2
820	Fan 4 Circuit 2
82c	Fan 4 Circuit 2
830	Fan 5 Circuit 2
83c	Fan 5 Circuit 2
840	Fan 6 Circuit 2
84c	Fan 6 Circuit 2
850	Fan 7 Circuit 2
85c	Fan 7 Circuit 2
860	Fan 8 Circuit 2
86c	Fan 8 Circuit 2
870	Fan 9 Circuit 2
87c	Fan 9 Circuit 2
880	Fan 10 Circuit 2
88c	Fan 10 Circuit 2
890	Fan 11 Circuit 2
89c	Fan 11 Circuit 2
900	Fan 12 Circuit 2
90c	Fan 12 Circuit 2
910	Alarm
91c	Alarm
920	Alarm type 1
92c	Alarm type 1
930	Alarm type 2
930	Alarm type 2
940	Auxiliary output 1
94c	Auxiliary output 1
950	Auxiliary output 2
950	Auxiliary output 2
960	Auxiliary output 2
96c	Auxiliary output 3
970	Auxiliary output 3
97c	Auxiliary output 4
980	Auxiliary output 5
980	Auxiliary output 5
990	Auxiliary output 5
990	
1000	Auxiliary output 7
1000	Auxiliary output 7
1010	Auxiliary output ?
1010	
1010	

1020	OnF
1020	OnF
1030	Inverter free circuit 1
1030	Inverter free circuit 1
1040	Inverter free circuit 2
1040	Inventer free circuit 2
104c	Inverter free circuit 2
1050	Valve superheat circuit 1
105c	Valve superheat circuit 1
1060	Valve superheat circuit 2
106c	Valve superheat circuit 2
107	Not used
108	Not used
1090	By-pass inverter 1 Suction Circuit 1
1090	By-pass inverter 1 Suction Circuit 1
1100	By-pass inverter 1 Suction Circuit 2
1100	By pass inverter 1 Suction Circuit 2
1110	Netwood
1110	Not used
1110	Not used
1120	Not used
112c	Not used
1130	Condenser drain valve output
113c	Condenser drain valve output
114o	Liquid line solenoid
114c	Liquid line solenoid
1150	Circuit Alarm relay for circuit 1
115c	Circuit Alarm relay for circuit 1
1160	Circuit Alarm relay for circuit 2
116c	Circuit Alarm relay for circuit 2
1170	Hot Gas injection valve into Flash tank (HGV_FT)
117c	Hot Gas injection valve into Flash tank (HGV_FT)
1180	Not used
118c	Notused
1190	Not used
1100	Not used
1200	Heat reclaim 1
1200	Heat reclaim 1
1200	Heat reclaim 2
1210	Lest realize 2
1210	Fred Techallin 2
1220	
1220	Exnaustran
1230	Liquid injection valve circuit 1
123c	Liquid injection valve circuit 1
1240	Liquid injection valve circuit 2
124c	Liquid injection valve circuit 2
1250	Heat reclaim 3 way valve output
125c	Heat reclaim 3 way valve output
1260	H-R water pump output
126c	H-R water pump output
127o	Parallel compression- Inverter
127c	Parallel compression- Inverter
1280	Parallel compression– Compressor 1
128c	Parallel compression– Compressor 1
1290	Parallel compression – Step Compr. 1
129c	Parallel compression – Step Compr. 1
1300	Parallel compression- Compressor 2
130c	Parallel compression– Compressor 2
1310	Parallel compression – Step Compression 2
1310	Parallel compression – Step Compr. 2
1320	Parallel compression_ Compressor 3
1320	Parallel compression Compressor 3
1330	Parallel compression - Stop Compress
1330	Parallel compression - Step Compr. 3
1340	n aralier compression - Step Compr. S
1040	De-superileat i

134c	De-superheat 1
1350	De-superheat 2
135c	De-superheat 2
1360	De-superheat 3
136c	De-superheat 3
1370	Heat reclaim2 3 Way valve
137c	Heat reclaim2 3 Way valve
1380	3 Way valve by pass
138c	3 Way valve by pass
1390	H-R2 water pump output
1390	H-R2 water pump output
1400	Inverter 2 Parallel
1400	Inverter 2 Parallel
1410	Parallel compression_ Compressor /
1410	Parallel compression Compressor 4
1410	Parallel compression – Compressor 4
1420	
1420	Parallel compression– Compressor 5
1430	Not used
143c	Not used
1440	Not used
144c	Not used
1450	Not used
145c	Not used
1460	Oil injection valve Circuit 1
146c	Oil injection valve Circuit 1
147o	Oil injection valve Circuit 2
147c	Oil injection valve Circuit 2
1480	Low oil level in circuit 1 alarm
148c	Low oil level in circuit 1 alarm
1490	Low oil level in circuit 2 alarm
1490	Low oil level in circuit 2 alarm
1500	Adiabatic spray
150c	Adiabatic spray
1500	Adiabatic spray
1500	Adiabatic spray
1500	Relancid value for LIV/AC control
1510	Solenoid valve for LIVAC control
1510	Solenoid valve for HVAC control
1520	Pump for HVAC control
152c	Pump for HVAC control
1530	Compressor(s) in medium temperature line not available
153c	Compressor(s) in medium temperature line not available
1540	Compressor(s) in low temperature line not available
154c	Compressor(s) in low temperature line not available
1550	Suction receiver high level
155c	Suction receiver high level
1560	Suction receiver low level
156c	Suction receiver low level
1570	Liquid Elector
157c	Liquid Ejector
1580	Vapour Fiector 1
1580	Vapour Ejector 1
1500	Vapour Ejector 2
1500	Vapour Ejector 2
1600	Vapour Figetor 2
1600	Vapour Figetor 2
1000	Vapour Ejector 3
1010	
1610	vapour Ejector 4
1620	vapour Ejector 5
162c	Vapour Ejector 5
1630	Reservoir unloading valve
163c	Reservoir unloading valve

5.1.3 ANALOG-OUTPUTS (parameters AOC1- AOC15)

Parameter	Description	IPR	C215D	IPX	(206D	IPX2	215D
		TYPE	RANGE	TYPE	RANGE	TYPE	RANGE
AOC1	Configuration Analog Output 1	V	TAB B				
AOC 2	Configuration Analog Output 2	V	TAB B				
AOC 3	Configuration Analog Output 3	V	TAB B				
AOC 4	Configuration Analog Output 4	V	TAB B				
AOC 5	Configuration Analog Output 5	AV	TAB A				
AOC 6	Configuration Analog Output 6	AV	TAB A				
AOC 7	Configuration Analog Output 7			V	TAB D		
AOC 8	Configuration Analog Output 8			V	TAB D		
AOC 9	Configuration Analog Output 9			V	TAB D		
AOC 10	Configuration Analog Output 10					V	TAB D
AOC 11	Configuration Analog Output 11					V	TAB D
AOC 12	Configuration Analog Output 12					V	TAB D
AOC 13	Configuration Analog Output 13					V	TAB D
AOC 14	Configuration Analog Output 14					AV	TAB C
AOC 15	Configuration Analog Output 15					AV	TAB C

NB: **V** = 0-10V; **AV** = 4-20mA or 0-10V

TAB A: Output 4+20mA - 0+10V (IPRC215D AOC5-AOC6)

0	Not used
1	Proportional 0-10 V output
2	0-10V output inverter 1 Suction Circuit 1
3	0-10V output inverter 2 Suction Circuit 1
4	0-10V output inverter 1 Suction Circuit 2
5	0-10V output inverter 2 Suction Circuit 2
6	0-10V output inverter condenser Circuit 1
7	0-10V output inverter condenser Circuit 2
8	0-10V output inverter condenser free Circuit 1
9	0-10V output inverter condenser free Circuit 2
10	Proportional 4-20mA output free
11	4-20mA output inverter 1 Suction Circuit 1
12	4-20mA output inverter 2 Suction Circuit 1
13	4-20mA output inverter 1 Suction Circuit 2
14	4-20mA output inverter 2 Suction Circuit2
15	4-20mA output inverter condenser Circuit 1
16	4-20mA output inverter condenser Circuit 2
17	4-20mA output inverter condenser free Circuit 1
18	4-20mA output inverter condenser free Circuit 2
19	0-10V H-R water pump output

20	0-10V HPV output
21	0-10V BGV ouptout
22	4-20mA H-R1 water pump output
23	4-20mA HPV output
24	4-20mA BGV output
25	0-10V Inverter parallel compression
26	4-20mA Inverter parallel compression
27	0-10V De-superheat 1
28	4-20mA De-superheat 1
29	0-10V De-superheat 2
30	4-20mA De-superheat 2
31	0-10V De-superheat 3
32	4-20mA De-superheat 3
33	0-10V H-R2 water pump output
34	4-20mA H-R2 water pump output
35	0-10V Oil injection valve circuit 1
36	0-10V Oil injection valve circuit 2
37	4-20mA Oil injection valve circuit 1
38	4-20mA Oil injection valve circuit 2
39	0-10V Heat reclaim 3 way valve output
40	0-10V 3 Way valve gas cooler by pass
41	4-20mA Heat reclaim 3 way valve output
42	4-20mA 3 Way valve gas cooler by pass
43	0-10V reservoir unloading valve
44	4-20mA reservoir unloading valve
45	0-10V Inverter 2 parallel compression
46	4-20mA Inverter 2 parallel compression
47	0-10V for liquid injection Circuit 1
48	0-10V for liquid injection Circuit 2
49	4-20mA for liquid injection Circuit 1
50	4-20mA for liquid injection Circuit 2

TAB B: Output 0÷10V (parameters IPRC215D AOC1-AOC4)

0	Not used
1	Proportional 0-10 V output
2	0-10V output inverter 1 Suction Circuit 1
3	0-10V output inverter 2 Suction Circuit 1
4	0-10V output inverter 1 Suction Circuit 2
5	0-10V output inverter 2 Suction Circuit 2
6	0-10V output inverter condenser Circuit 1
7	0-10V output inverter condenser Circuit 2
8	0-10V output inverter condenser free Circuit 1
9	0-10V output inverter condenser free Circuit 2
10	0-10V H-R water pump output
11	0-10V HPV output
12	0-10V BGV ouptout
13	0-10V Inverter parallel compression
14	0-10V De-superheat 1
15	0-10V De-superheat 2
16	0-10V De-superheat 3
17	0-10V H-R2 water pump output
18	0-10V Oil injection valve circuit 1
19	0-10V Oil injection valve circuit 2
20	0-10V Heat reclaim 3 way valve output
21	0-10V 3 Way valve gas cooler by pass
22	0-10V reservoir unloading valve

23	0-10V Inverter 2 parallel compression
24	0-10V for liquid injection Circuit 1
25	0-10V for liquid injection Circuit 2

TAB C: Output 4+20mA - 0+10V (parameters IPX215D: AOC14-AOC15)

0	Not used
1	0-10V H-R water pump output
2	0-10V HPV output
3	0-10V BY-PASS VALVE ouptout
4	4-20mA H-R water pump output
5	4-20mA HPV output
6	4-20mA BY-PASS VALVE output
7	0-10V De-superheat 1
8	4-20mA De-superheat 1
9	0-10V De-superheat 2
10	4-20mA De-superheat 2
11	0-10V De-superheat 3
12	4-20mA De-superheat 3
13	0-10V H-R2 water pump output
14	4-20mA H-R2 water pump output
15	0-10V Oil injection valve circuit 1
16	0-10V Oil injection valve circuit 2
17	4-20mA Oil injection valve circuit 1
18	4-20mA Oil injection valve circuit 2
19	0-10V Heat reclaim 3 way valve output
20	0-10V 3 Way valve gas cooler by pass
21	4-20mA Heat reclaim 3 way valve output
22	4-20mA 3 Way valve gas cooler by pass
23	0-10V reservoir unloading valve
24	4-20mA reservoir unloading valve
25	0-10V for liquid injection Circuit 1
26	0-10V for liquid injection Circuit 2
27	4-20mA for liquid injection Circuit 1
28	4-20mA for liquid injection Circuit 2

TAB D: Output 0÷10V (IPX215D: AOC7-AOC13)

0	Not used
1	0-10V H-R water pump output
2	0-10V HPV output
3	0-10V BY-PASS VALVE ouptout
4	0-10V De-superheat 1
5	0-10V De-superheat 2
6	0-10V De-superheat 3
7	0-10V H-R2 water pump output
8	0-10V Oil injection valve circuit 1
9	0-10V Oil injection valve circuit 2
10	0-10V Heat reclaim 3 way valve output
11	0-10V 3 Way valve gas cooler by pass
12	0-10V reservoir unloading valve
13	0-10V for liquid injection Circuit 1
14	0-10V for liquid injection Circuit 2

Parameter	Description	min	max	IPRC215D/ IPR210D	IPX206D	IPX215D	XEV20D_ 1	XEV20D_ 2
AIC 1	Configuration Analog Input 1	0	178	x				
AIC 2	Configuration Analog Input 2	0	178	x				
AIC 3	Configuration Analog Input 3	0	178	х				
AIC 4	Configuration Analog Input 4	0	178	x				
AIC 5	Configuration Analog Input 5	0	178	x				
AIC 6	Configuration Analog Input 6	0	178	x				
AIC 7	Configuration Analog Input 7	0	178	x				
AIC 8	Configuration Analog Input 8	0	178	x				
AIC 9	Configuration Analog Input 9	0	178	x				
AIC 10	Analog Input 10	0	178	x				
AIC 11	Analog Input 11	0	178		x			
AIC 12	Analog Input 12	0	178		x			
AIC 13	Analog Input 13	0	178		x			
AIC 14	Analog Input 14	0	178		x			
AIC 15	Analog Input 15	0	178		x			
	Analog Input 16	0	170		x			
	Analog Input 17	0	170		^	×		
	Analog Input 18	0	170			×		
	Analog Input 19	0	178			^ ~		
AIC21	Analog Input 20	0	178			x		
AIC 22	Analog Input 21	0	178			x		
AIC 23	Analog Input 22	0	178			x		
AIC 24	Analog Input 23 Configuration	0	178			x		
AIC 25	Analog Input 24 Configuration	0	178			x		
AIC 26	Analog Input 25 Configuration	0	178			x		
AIC 27	Analog Input 26 Configuration	0	178			x		
AIC 28	Analog Input 27	0	145				×	
AIU 20	Analog Input 28	0	140				*	

Parameter	Description	min	max	IPRC215D/ IPR210D	IPX206D	IPX215D	XEV20D_ 1	XEV20D_ 2
AIC 29	Configuration Analog Input 29	0	145				x	
AIC 30	Configuration Analog Input 30	0	178				x	
AIC 31	Configuration Analog Input 31	0	178				x	
AIC 32	Configuration Analog Input 32	0	145					х
AIC 33	Configuration Analog Input 33	0	145					x
AIC 34	Configuration Analog Input 24	0	178					x
AIC 35	Configuration Analog Input 25	0	178					x

Note: XEV20 has 4 Als: They can be NTC, NTC CPC, PTC. It means that AIC28, AIC29 AI32, AI33can be only NTC, NTC CPC, PTC.

Configuration for AIC1 to AIC35 The Configuration for AIC1 to AIC27:

Value	Setting
0	Not used
1	NTC Temperature probe Suction Circuit1
2	NTC Temperature probe Suction Circuit2
3	NTC Temperature probe Condenser Circuit1
4	NTC Temperature probe Condenser Circuit2
5	NTC Temperature probe Thermostat Aux1
6	NTC Temperature probe Thermostat Aux2
7	NTC Temperature probe Thermostat Aux3
8	NTC Temperature probe Thermostat Aux4
9	NTC Temperature probe Thermostat Aux5
10	NTC Temperature probe Thermostat Aux6
11	NTC Temperature probe Thermostat Aux7
12	NTC Temperature probe Thermostat Aux8
13	NTC Temperature probe Dynamic / Split set condenser 1
14	NTC Temperature probe Dynamic / Split set condenser 2
15	NTC Temperature probe Dynamic set suction 1
16	NTC Temperature probe Dynamic set suction 2
17	NTC Temperature probe Superheat 1
18	NTC Temperature probe Superheat 2
19	PTC Temperature probe Suction Circuit1
20	PTC Temperature probe Suction Circuit2
21	PTC Temperature probe Condenser Circuit1
22	PTC Temperature probe Condenser Circuit2
23	PTC Temperature probe Thermostat Aux1
24	PTC Temperature probe Thermostat Aux2
25	PTC Temperature probe Thermostat Aux3
26	PTC Temperature probe Thermostat Aux4
27	PTC Temperature probe Thermostat Aux5
28	PTC Temperature probe Thermostat Aux6
29	PTC Temperature probe Thermostat Aux7
30	PTC Temperature probe Thermostat Aux8
31	PTC Temperature probe Dynamic/ Split set condenser 1
32	PTC Temperature probe Dynamic/ Split set condenser 2
33	PTC Temperature probe Dynamic set suction 1
34	PTC Temperature probe Dynamic set suction 2
35	PTC Temperature probe Superheat 1
36	PTC Temperature probe Superheat 2
37	4-20mA Pressure Probe Suction Circuit1

Value	Setting
38	4-20mA Pressure Probe Suction Circuit2
39	4-20mA Pressure Probe Condenser Circuit1
40	4-20mA Pressure Probe Condenser Circuit2
41	0-5 V Pressure Probe Suction Circuit1
42	0-5 V Pressure Probe Suction Circuit2
43	0-5 V Pressure Probe Condenser Circuit1
44	0-5 V Pressure Probe Condenser Circuit2
45	NTC Suction Temperature Compressor 1 Circuit 1
46	NTC Suction Temperature Compressor 2 Circuit 1
47	NTC Suction Temperature Compressor 3 Circuit 1
48	NTC Suction Temperature Compressor 4 Circuit 1
49	NTC Suction Temperature Compressor 5 Circuit 1
50	NTC Suction Temperature Compressor 6 Circuit 1
51	NTC Suction Temperature Compressor 7 Circuit 1
52	NTC Suction Temperature Compressor 8 Circuit 1
53	NTC Suction Temperature Compressor 9 Circuit 1
54	NTC Suction Temperature Compressor 9 Circuit 1
55	NTC Suction Temperature Compressor 10 Circuit 1
55	NTC Suction Temperature Compressor 12 Circuit 1
57	NTC Suction Temperature Compressor 12 Circuit 7
59	NTC Suction Temperature Compressor 2 Circuit 2
50	NTC Suction Temperature Compressor 2 Circuit 2
59	NTC Suction Temperature Compressor 3 Circuit 2
61	NTC Suction Temperature Compressor 4 Circuit 2
62	NTC Suction Temperature Compressor 5 Circuit 2
62	NTC Suction Temperature Compressor 6 Circuit 2
63	NTC Suction Temperature Compressor 7 Circuit 2
04	NTC Suction Temperature Compressor 8 Circuit 2
65	NTC Suction Temperature Compressor 9 Circuit 2
67	NTC Suction Temperature Compressor 10 Circuit 2
67	NTC Suction Temperature Compressor 11 Circuit 2
68	NTC Suction Temperature Compressor 12 Circuit 2
69	NTC Discharge Temperature Compressor 1 Circuit 1
70	NTC Discharge Temperature Compressor 2 Circuit 1
71	NTC Discharge Temperature Compressor 3 Circuit 1
72	NTC Discharge Temperature Compressor 4 Circuit 1
73	NTC Discharge Temperature Compressor 5 Circuit 1
74	NTC Discharge Temperature Compressor 6 Circuit 1
75	NTC Discharge Temperature Compressor 7 Circuit 1
76	NTC Discharge Temperature Compressor 8 Circuit 1
//	NTC Discharge Temperature Compressor 9 Circuit 1
78	NTC Discharge Temperature Compressor 10 Circuit 1
79	NTC Discharge Temperature Compressor 11 Circuit 1
80	NTC Discharge Temperature Compressor 12 Circuit 1
81	NTC Discharge Temperature Compressor 1 Circuit 2
82	NTC Discharge Temperature Compressor 2 Circuit 2
83	NTC Discharge Temperature Compressor 3 Circuit 2
84	NTC Discharge Temperature Compressor 4 Circuit 2
85	NTC Discharge Temperature Compressor 5 Circuit 2
86	NTC Discharge Temperature Compressor 6 Circuit 2
87	NTC Discharge Temperature Compressor 7 Circuit 2
88	NTC Discharge Temperature Compressor 8 Circuit 2
89	NTC Discharge Temperature Compressor 9 Circuit 2
90	NTC Discharge Temperature Compressor 10 Circuit 2
91	NTC Discharge Temperature Compressor 11 Circuit 2
92	NTC Discharge Temperature Compressor 12 Circuit 2
93	NTC OAT
94	PTC OAT
95	NTC De-superheat 1
96	PTC De-superheat 1
97	NTC De-superheat 2
98	PTC De-superheat 2
99	NTC De-superheat 3

Value	Setting
100	PTC De-superheat 3
101	NTC-CPC Temperature probe Thermostat Aux1
102	NTC-CPC Temperature probe Thermostat Aux2
103	NTC-CPC Temperature probe Thermostat Aux3
104	NTC-CPC Temperature probe Thermostat Aux4
105	NTC-CPC Temperature probe Thermostat Aux5
106	NTC-CPC Temperature probe Thermostat Aux6
107	NTC-CPC Temperature probe Thermostat Aux7
108	NTC-CPC Temperature probe Thermostat Aux8
109	NTC-CPC Suction Temperature Compressor 1 Circuit 1
110	NTC-CPC Suction Temperature Compressor 2 Circuit 1
111	NTC-CPC Suction Temperature Compressor 3 Circuit 1
112	NTC-CPC Suction Temperature Compressor 4 Circuit 1
113	NTC-CPC Suction Temperature Compressor 5 Circuit 1
114	NTC-CPC Suction Temperature Compressor 6 Circuit 1
115	NTC-CPC Suction Temperature Compressor 7 Circuit 1
116	NTC-CPC Suction Temperature Compressor 8 Circuit 1
117	NTC-CPC Suction Temperature Compressor 9 Circuit 1
118	NTC-CPC Suction Temperature Compressor 10 Circuit 1
119	NTC-CPC Suction Temperature Compressor 11 Circuit 1
120	NTC-CPC Suction Temperature Compressor 12 Circuit 1
121	NTC-CPC Suction Temperature Compressor 1 Circuit 2
122	NTC-CPC Suction Temperature Compressor 2 Circuit 2
123	NTC-CPC Suction Temperature Compressor 3 Circuit 2
124	NTC-CPC Suction Temperature Compressor 4 Circuit 2
125	NTC-CPC Suction Temperature Compressor 5 Circuit 2
120	NTC-CPC Suction Temperature Compressor 6 Circuit 2
127	NTC-CPC Suction Temperature Compressor 7 Circuit 2
120	NTC-CPC Suction Temperature Compressor & Circuit 2
129	NTC-CPC Suction Temperature Compressor 10 Circuit 2
131	NTC-CPC Suction Temperature Compressor 10 Circuit 2
132	NTC-CPC Suction Temperature Compressor 12 Circuit 2
133	NTC Rack temperature
134	PTC Rack temperature
135	0-5V Liquid level
136	NTC Suction float temperature Circuit 1
137	NTC Suction float temperature Circuit 2
138	PTC Suction float temperature Circuit 1
139	PTC Suction float temperature Circuit 2
140	NTC-CPC Temperature probe Dynamic / Split set condenser 1
141	NTC-CPC Temperature probe Dynamic / Split set condenser 2
142	4-20mA Gas Leak Detector 1 probe
143	1-5V Gas Leak Detector 1 probe (see the note here below)
144	4-20mA Gas Leak Detector 2 probe
145	1-5V Gas Leak Detector 2 probe (see the note here below)
146	4-20mA Gas Leak Detector 3 probe
147	1-5V Gas Leak Detector 3 probe (see the note here below)
148	4-20mA Gas Leak Detector 4 probe
149	1-5V Gas Leak Detector 4 probe (see the note here below)
150	NTC-CPC Temperature probe Dynamic set suction 1
151	A 20m A Pressure Probe of CO2 flesh tenk
152	4-20mA Pressure Probe of CO2 flash tank
153	NTC Cas cooler outlet temperature
155	CPC Cas cooler outlet temperature
156	NTC Discharge line temperature circuit 1
157	NTC Discharge line temperature circuit 2
158	PTC Discharge line temperature circuit 1
159	PTC Discharge line temperature circuit 2
160	NTC H-R secondry fluid outlet temperature
161	NTC-CPC H-R secondry fluid outlet temperature

Value	Setting
162	NTC H-R secondry fluid inlet temperature
163	NTC-CPC H-R secondry fluid inlet temperature
164	NTC H-R tank water temperature
165	NTC-CPC H-R water temperature
166	NTC CO2 Temperature post heat reclaim
167	NTC temperature before HPV
168	NTC-CPC temperature before HPV
169	4-20mA Gas Cooler pressure
170	0-5V Gas Cooler pressure
171	0-10V H-R1 signal
172	4-20mA H-R1 signal
173	4-20mA Gas Discharge pressure
174	0-5V Gas Discharge pressure
175	NTC Suction line temperature parallel compressor
176	NTC Discharge line temperature parallel compressor
177	PTC Suction line temperature parallel compressor
178	PTC Discharge line temperature parallel compressor
179	NTC H-R2 secondry fluid outlet temperature (Thr2 out)
180	NTC-CPC H-R2 secondry fluid outlet temperature (Thr2 out)
181	NTC H-R2 secondry fluid inlet temperature (Thr2 in)
182	NTC-CPC H-R2 secondry fluid inlet temperature (Thr2 in)
183	NTC H-R2 tank water temperature (Twt2)
184	NTC-CPC H-R2 water temperature (Twt2)
185	NTC CO2 Temperature post heat reclaim 2 (Tphr2)
186	NTC-CPC AUX Temperature probe suction circ.1
187	NTC-CPC AUX Temperature probe suction circ.2
188	NTC-CPC OAT
189	NTC-CPC De-superheat 1
190	NTC-CPC De-superheat 2
191	NTC-CPC De-superheat 3
192	NTC-CPC Rack temperature
193	NTC-CPC Suction float temperature Circuit 1
194	NTC-CPC Suction float temperature Circuit 2
195	NTC-CPC Discharge line temperature circuit 1
196	NTC-CPC Discharge line temperature circuit 2
197	NTC-CPC Suction line temperature parallel compressor
198	NTC-CPC Discharge line temperature parallel compressor
199	4-20mA Oil pressure receiver circuit 1
200	4-20mA Oil pressure receiver circuit 2
201	0-5V Oil pressure receiver circuit 1
202	0-5V Oil pressure receiver circuit 2

Configuration for AIC28 to AIC35

Value	Setting
0	Not used
1	NTC Temperature probe Suction Circuit1
2	NTC Temperature probe Suction Circuit2
3	NTC Temperature probe Condenser Circuit1
4	NTC Temperature probe Condenser Circuit2
5	NTC Temperature probe Thermostat Aux1
6	NTC Temperature probe Thermostat Aux2
7	NTC Temperature probe Thermostat Aux3
8	NTC Temperature probe Thermostat Aux4
9	NTC Temperature probe Thermostat Aux5
10	NTC Temperature probe Thermostat Aux6
11	NTC Temperature probe Thermostat Aux7
12	NTC Temperature probe Thermostat Aux8
13	NTC Temperature probe Dynamic / Split set condenser 1
14	NTC Temperature probe Dynamic / Split set condenser 2
15	NTC Temperature probe Dynamic set suction 1

Value	Setting
16	NTC Temperature probe Dynamic set suction 2
17	NTC AUX Temperature probe suction circ.1
18	NTC AUX Temperature probe suction circ.2
19	PTC Temperature probe Suction Circuit1
20	PTC Temperature probe Suction Circuit2
21	PTC Temperature probe Condenser Circuit1
22	PTC Temperature probe Condenser Circuit2
23	PTC Temperature probe Thermostat Aux1
24	PTC Temperature probe Thermostat Aux2
25	PTC Temperature probe Thermostat Aux3
26	PTC Temperature probe Thermostat Aux4
27	PTC Temperature probe Thermostat Aux5
28	PTC Temperature probe Thermostat Aux6
29	PTC Temperature probe Thermostat Aux7
30	PTC Temperature probe Thermostat Aux8
31	PTC Temperature probe Dynamic/ Split set condenser 1
32	PTC Temperature probe Dynamic/ Split set condenser 2
33	PTC Temperature probe Dynamic set suction 1
34	PTC Temperature probe Dynamic set suction 2
35	PTC AUX Temperature probe suction circ.1
36	NTC Survive Temperature Probe suction circ.2
45	NTC Suction Temperature Compressor 1 Circuit 1
46	NTC Suction Temperature Compressor 2 Circuit 1
47	NTC Suction Temperature Compressor 3 Circuit 1
48	NTC Suction Temperature Compressor 4 Circuit 1
49	NTC Suction Temperature Compressor 5 Circuit 1
50	NTC Suction Temperature Compressor 8 Circuit 1
52	NTC Suction Temperature Compressor 7 Circuit 1
53	NTC Suction Temperature Compressor 9 Circuit 1
54	NTC Suction Temperature Compressor 9 Circuit 1
55	NTC Suction Temperature Compressor 11 Circuit 1
56	NTC Suction Temperature Compressor 12 Circuit 1
57	NTC Suction Temperature Compressor 1 Circuit 2
58	NTC Suction Temperature Compressor 2 Circuit 2
59	NTC Suction Temperature Compressor 3 Circuit 2
60	NTC Suction Temperature Compressor 4 Circuit 2
61	NTC Suction Temperature Compressor 5 Circuit 2
62	NTC Suction Temperature Compressor 6 Circuit 2
63	NTC Suction Temperature Compressor 7 Circuit 2
64	NTC Suction Temperature Compressor 8 Circuit 2
65	NTC Suction Temperature Compressor 9 Circuit 2
66	NTC Suction Temperature Compressor 10 Circuit 2
67	NTC Suction Temperature Compressor 11 Circuit 2
68	NTC Suction Temperature Compressor 12 Circuit 2
69	PTC Discharge Temperature Compressor 1 Circuit 1
70	PTC Discharge Temperature Compressor 2 Circuit 1
/1	PTC Discharge Temperature Compressor 3 Circuit 1
72	PTC Discharge Temperature Compressor 4 Circuit 1
73	PTC Discharge Temperature Compressor 5 Circuit 1
74	PTC Discharge Temperature Compressor 6 Circuit 1
10	PTC Discharge Temperature Compressor / Circuit 1
70	PTC Discharge Temperature Compressor & Circuit 1
79	PTC Discharge Temperature Compressor 9 Circuit 1
70	PTC Discharge Temperature Compressor 11 Circuit 1
80	PTC Discharge Temperature Compressor 12 Circuit 1
81	PTC Discharge Temperature Compressor 12 Circuit 2

Value	Setting
82	PTC Discharge Temperature Compressor 2 Circuit 2
83	PTC Discharge Temperature Compressor 3 Circuit 2
84	PTC Discharge Temperature Compressor 4 Circuit 2
85	PTC Discharge Temperature Compressor 5 Circuit 2
86	PTC Discharge Temperature Compressor 6 Circuit 2
87	PTC Discharge Temperature Compressor 7 Circuit 2
88	PTC Discharge Temperature Compressor 8 Circuit 2
89	PTC Discharge Temperature Compressor 9 Circuit 2
90	PTC Discharge Temperature Compressor 10 Circuit 2
91	PTC Discharge Temperature Compressor 11 Circuit 2
92	PTC Discharge Temperature Compressor 12 Circuit 2
93	
94	PTC OAT
95	NTC De-superheat 1
96	PTC De-superheat 1
97	NTC De-superheat 2
98	PTC De-superheat 2
99	NTC De-superheat 3
100	PTC Desuperheat 3
101	NTC-CPC Temperature probe Thermostat Aux1
102	NTC-CPC Temperature probe Thermostat Aux?
103	NTC-CPC. Temperature probe Thermostat Aux3
104	NTC-CPC Temperature probe Thermostat Aux4
105	NTC-CPC Temperature probe Thermostat Aux5
106	NTC-CPC Temperature probe Thermostat Aux6
107	NTC-CPC Temperature probe Thermostat Aux7
108	NTC-CPC Temperature probe Thermostat Aux8
109	NTC-CPC Suction Temperature Compressor 1 Circuit 1
110	NTC-CPC Suction Temperature Compressor 2 Circuit 1
111	NTC-CPC Suction Temperature Compressor 3 Circuit 1
112	NTC-CPC Suction Temperature Compressor 4 Circuit 1
113	NTC-CPC Suction Temperature Compressor 5 Circuit 1
114	NTC-CPC Suction Temperature Compressor 6 Circuit 1
115	NTC-CPC Suction Temperature Compressor 7 Circuit 1
116	NTC-CPC Suction Temperature Compressor 8 Circuit 1
117	NTC-CPC Suction Temperature Compressor 9 Circuit 1
118	NTC-CPC Suction Temperature Compressor 10 Circuit 1
119	NTC-CPC Suction Temperature Compressor 11 Circuit 1
120	NTC-CPC Suction Temperature Compressor 12 Circuit 1
121	NTC-CPC Suction Temperature Compressor 1 Circuit 2
122	NTC-CPC Suction Temperature Compressor 2 Circuit 2
123	NTC-CPC Suction Temperature Compressor 3 Circuit 2
124	NTC-CPC Suction Temperature Compressor 4 Circuit 2
125	NTC-CPC Suction Temperature Compressor 5 Circuit 2
126	NTC-CPC Suction Temperature Compressor 6 Circuit 2
127	NTC-CPC Suction Temperature Compressor 7 Circuit 2
128	NTC-CPC Suction Temperature Compressor 8 Circuit 2
129	NTC-CPC Suction Temperature Compressor 9 Circuit 2
130	NTC-CPC Suction Temperature Compressor 10 Circuit 2
131	NTC-CPC Suction Temperature Compressor 11 Circuit 2
132	NTC-CPC Suction Temperature Compressor 12 Circuit 2
133	NTC Rack temperature
134	PTC Rack temperature
136	NTC Suction float temperature Circuit 1
137	NTC Suction float temperature Circuit 2
138	PTC Suction float temperature Circuit 1
139	PTC Suction float temperature Circuit 2
140	NTC-CPC Temperature probe Dynamic / Split set condenser 1

Value	Setting		
141	NTC-CPC Temperature probe Dynamic / Split set condenser 2		
150	NTC-CPC Temperature probe Dynamic set suction 1		
151	NTC-CPC Temperature probe Dynamic set suction 2		
154	NTC Gas cooler outlet temperature		
155	CPC Gas cooler outlet temperature		
156	NTC Discharge line temperature circuit 1		
157	NTC Discharge line temperature circuit 2		
158	PTC Discharge line temperature circuit 1		
159	PTC Discharge line temperature circuit 2		
160	NTC H-R secondry fluid outlet temperature (Throut)		
161	NTC-CPC H-R secondry fluid outlet temperature (Throut)		
162	NTC H-R secondry fluid inlet temperature (Thrin)		
163	NTC-CPC H-R secondry fluid inlet temperature (Thrin)		
164	NTC H-R tank water temperature (Twt)		
165	NTC-CPC H-R water temperature (Twt)		
166	NTC CO2 Temperature post heat reclaim (Tphr)		
167	NTC temperature before HPV (Thpv)		
168	NTC-CPC temperature before HPV (Thpv)		
175	NTC Suction line temperature parallel compressor		
176	NTC Discharge line temperature parallel compressor		
177	PTC Suction line temperature parallel compressor		
178	PTC Discharge line temperature parallel compressor		
179	NTC H-R2 secondry fluid outlet temperature (Thr2 out)		
180	NTC-CPC H-R2 secondry fluid outlet temperature (Thr2 out)		
181	NTC H-R2 secondry fluid inlet temperature (Thr2 in)		
182	NTC-CPC H-R2 secondry fluid inlet temperature (Thr2 in)		
183	NTC H-R2 tank water temperature (Twt2)		
184	NTC-CPC H-R2 water temperature (Twt2)		
185	NTC CO2 Temperature post heat reclaim 2 (Tphr2)		
186	NTC-CPC AUX Temperature probe suction circ.1		
187	NTC-CPC AUX Temperature probe suction circ.2		
188	NTC-CPC OAT		
189	NTC-CPC De-superheat 1		
190	NTC-CPC De-superheat 2		
191	NTC-CPC De-superheat 3		
192	NTC-CPC Rack temperature		
193	NTC-CPC Suction float temperature Circuit 1		
194	NTC-CPC Suction float temperature Circuit 2		
195	NTC-CPC Discharge line temperature circuit 1		
196	NTC-CPC Discharge line temperature circuit 2		
197	NTC-CPC Suction line temperature parallel compressor		
198	NTC-CPC Discharge line temperature parallel compressor		
203	NTC Temperature Probe Evaporator in HVAC cooling control		
204	NTC CPC Temperature Probe Evaporator in HVAC cooling control		

6 PARAMETERS

6.1.1 Set Point (SETC1-SETF2,SETPC)

SETC1 Compressor Circuit 1 Set Point

Range: RC2÷RC3 UM: according to CF26

SETC2 Compressor Circuit 2 Set Point

Range: RC6÷RC7 UM: according to CF26

SETF1 Condenser Circuit 1 Set Point

Range: RC10÷RC11 UM: according to CF26

SETF2 Condenser Circuit 2 Set Point

Range: RC14÷RC15 UM: according to CF26

SETPC Parallel compression 1 Set Point

Range: GC20÷PC3 UM: Always in Pressure, depending on the paremeter CF26: CF26 = CDEC: (bar) CF26 = F: (PSI) CF26 = BAR: bar (°C) CF26 = PSI: PSI (°F) CF26 = KPA: KPA (°C) CF26 = CKPA: (KPA)

6.1.2 Compressor Rack setup (CF1, CF33, CF16-CF17)

 CF1 Kind of compressors - circuit 1: to set the kind of compressors. SPo = compressors with the same capacity.
BtZ = screw compressors like Bitzer, Hanbell, Refcomp etc operation.
Frtz = screw compressors like Frascold operation.
dPO = mixed capacities

CF33 Kind of compressors - circuit 2

To set the kind of compressors.

SPo = compressors with the same capacity

BtZ = screw compressors like Bitzer, Hanbell, Refcomp etc operation

Frtz = screw compressors like Frascold operation

dPO = mixed capacities

CF16 Kind of gas CIRCUIT 1

Set the kind of gas used in the plant

Param Value	LABEL	REFRIGERANT	OPERATING RANGE
0	R22	r22	-50-60°C/-58÷120°F
1	r404A	r404A	-50-60°C/-58÷120°F
2	r507	r507	-70-60°C/-94÷120°F
3	r134A	r134A	-70-60°C/-94÷120°F
4	717	717	-50-60°C/-58÷120°F
5	r744	r744 - Co2	-50-30°C/-58÷86°F
6	r410	r410	-50-60°C/-58÷120°F
7	r407C	r407C	-50-60°C/-58÷120°F

8	r407F	r407F	-50-60°C/-58÷120°F
9	r407A	r407A	-50-60°C/-58÷120°F
10	r290	r290 – Propane	-50-60°C/-58÷120°F
11	r450A	r450A	-45-60°C/-69÷120°F
12	r513	r513	-45-60°C/-69÷120°F
13	r448	r448A	-45-60°C/-69÷120°F
14	r449	r449A	-45-60°C/-69÷120°F
15	r32	r32	-55-60°C/-94÷120°F
16	r1234ze	r1234ze	-18÷50°C/0÷122°F

CF17 Kind of gas CIRCUIT 2

Like CF16 Range: 0÷16

6.1.3 Different Capacity Compressors setup (CF4-CF15)

CF4- CF9 Power of compressor 1-6 Circuit 1

For setting the capacity of single compressor (insert in each parameter the capacity of the compressor used).

E.I. 3 compressors with following capacity: 10, 20, 40 KW. The parameters have to be set in this way: CF4=10, CF5=20, CF6=40 CF7=CF8=CF9=0.

Range: 0+100; 0 = not used

UM: KW

CF10- CF15 Power of compressor 1-6 Circuit 2

Like CF4-CF9.

Range: 0+100: 0 = not used UM: KW

6.1.4 Regulation (CF18-CF25, CF28-CF30, CF34, CF34-CF52)

CF18 Type of regulation for compressor Circuit 1

Range: 0+2

0: db = neutral zone

1: Pb = proportional band

CF19 Type of regulation for compressor Circuit 2

Range: 0+2

0. db = neutral zone 1:

Pb = proportional band

CF22 Compressor rotation circuit 1:

YES = rotation: the algorithm distributes the working time between loads to ensure even run times. no = fixed sequence: the compressors are enabled and disabled in fixed sequence: first, second etc.

CF23 Compressor rotation circuit 2:

YES = rotation: the algorithm distributes the working time between loads to ensure even run times. no = fixed sequence: the compressors are enabled and disabled in fixed sequence: first, second etc.

CF24 Fan rotation circuit 1:

YES = rotation: the algorithm distributes the working time between loads to ensure even run times. no = fixed sequence: the fans are enabled and disabled in fixed sequence: first, second etc.

CF25 Fan rotation circuit 2:

YES = rotation: the algorithm distributes the working time between loads to ensure even run times. no = fixed sequence: the fans are enabled and disabled in fixed sequence: first, second etc.

CF28 Activation time during the switching on of first step (valve of 25%) for Bitzer screw compressors: (0÷255s): it sets for how long the valve is used during the startup phase.

CF29 First step enabled during the regulation (switching off phase): it sets if the first step can be used also during normal regulation.

NO = first step used only during the start phase **YES** = first step used also during normal regulation

CF30 Delay between the activation of the valve of the first step and compressor activation

CF34 Parallel Compressor rotation

Range: 0÷1

YES = rotation: the algorithm distributes the working time between loads to ensure even run times.

no = fixed sequence: the compressors are enabled and disabled in fixed sequence: first, second etc. **Kind of parallel compressors**

- To set the kind of compressors.
- Range: 0÷1 0:

CF35

SPo = compressors with the same capacity

1: **dPO =** mixed capacities

CF36- CF41 Power of parallel compressor 1-5

For setting the capacity of single compressor (insert in each parameter the capacity of the compressor used).

E.I. 3 compressors with following capacity: 10, 20, 40 KW. The parameters have to be set in this way: CF36=10, C37=20, CF38=40.

Range: 0÷100; 0 = not used

UM: KW

CF41 Circuit 1: suction Group % capacity calculation

Range: 0÷1

0: NO = suction Group % capacity is not calculated

- 1: YES = suction Group % capacity is calculated
- CF42 Inverter Circuit 1: capacity Range: 0÷100; 0 = not used UM: KW
- CF43 Inverter Circuit 1 min speed (Hz) Range: 10÷100; UM: Hz
- CF44 Inverter Circuit 1 MAX speed (Hz) Range: 10÷100; UM: Hz
- CF45 Circuit 2: suction Group % capacity calculation

Range: 0÷1

- 0: **NO =** suction Group % capacity is not calculated
- 1: **YES** = suction Group % capacity is calculated
- CF46 Inverter Circuit 2: capacity Range: 0÷100; 0 = not used UM: KW
- CF47 Inverter Circuit 2 min speed (Hz) Range: 10÷100; UM: Hz
- CF48 Inverter Circuit 2 MAX speed (Hz) Range: 10÷100; UM: Hz

CF49 Parallel compressor suction Group % capacity calculation

Range: 0+1

1.

- 0: **NO =** suction Group % capacity is not calculated
 - YES = suction Group % capacity is calculated
- CF50 Inverter of parallel compressors capacity Range: 0÷100; 0 = not used UM: KW
- CF51 Inverter of parallel compressors min speed (Hz) Range: 10÷100; UM: Hz
- CF52 Inverter of parallel compressors MAX speed (Hz) Range: 10÷100; UM: Hz

6.1.5 Display (CF26- CF27)

CF26 displaying measurement unit: it sets the measurement unit used for the display and for parameters that are connected to temperature/pressure. In pharentesis other measurement unit. CDEC: °C with decimal point (bar); F: °F (PSI); BAR: bar (°C); PSI: PSI (°F); KPA: KPA (°C) CKPA: °C (KPA)

<u>NOTE</u>: the IProRACK does not perform any automatic conversion of the parameters. The parameters must be entered in the correct unit. NOTE2: parameters with probe calibration, are reset during the measurement unit change.

CF27 Pressure display: it indicates if the range of the probes are related to relative or absolute pressure. rEL = relative pressure; AbS: absolute pressure NOTE: the temperature is updated changing this value.

6.1.6 Analog Inputs – Probe adjustment (Ai1-Ai11)

- Al1-10 Probe 1-10 calibration: (AI7-Al10 are present only on the IPRC215D) with CF26 = CDEC or CINT: -12.0 ÷ 12.0 °C with CF26= bar: -1.20 ÷ 1.20 bar; with CF26 = F or PSI: -120 ÷ 120 °F o PSI with CF26 = KPA: -1200 ÷ 1200 KPA;
- All1 Alarm activated in case of regulation faulty probe: nu = none relay; Alr: all the C(i) Inputs set as ALr; ALr1: all the C(i) Inputs set as ALr1, ALr2: all the C(i) Inputs set as ALr2

6.1.7 Analog Inputs – Pressure probe set up (Ai12-Ai31)

- Al12 Probe 1 read out at 4mA/0,5V (-1.00-Ai13 bar, -14.5÷Ai13 PSI, -100÷Ai13KPA)
- Al13 Probe 1 read out at 20mA/4,5V (Ai12÷160 bar, Ai12÷ 2320, Ai12÷16000 KPA)
- Al14 Probe 2 read out at 4mA/0,5V (-1.00-Ai15 bar, -14.5÷Ai15 PSI, -100÷Ai15KPA)
- Al15 Probe 2 read out at 20mA/4,5V (Ai14÷160 bar, Ai14÷2320, Ai14÷16000 KPA)
- Al16 Probe 3 read out at 4mA/0,5V (-1.00-Ai17 bar, -14.5÷Ai17 PSI, -100÷Ai17KPA)
- Al17 Probe 3 read out at 20mA/4,5V (Ai16÷160 bar, Ai16÷ 2320, Ai16÷16000 KPA)

- Al18 Probe 4 read out at 4mA/0,5V (-1.00-Ai19 bar, -14.5÷Ai19 PSI, -100÷Ai19KPA)
- Al19 Probe 4 read out at 20mA/4,5V (Ai18÷160 bar, Ai18÷ 2320, Ai18÷16000 KPA)
- Al20 Probe 5 read out at 4mA/0,5V (-1.00-Ai21 bar, -14.5÷Ai21 PSI, -100÷Ai21KPA)
- Al21 Probe 5 read out at 20mA/4,5V (Ai20÷160 bar, Ai20÷ 2320, Ai20÷16000 KPA)
- Al22 Probe 6 read out at 4mA/0,5V (-1.00-Ai23 bar, -14.5+Ai23 PSI, -100+Ai23KPA)
- Al23 Probe 6 read out at 20mA/4,5V (Ai22÷160 bar, Ai22÷ 2320, Ai22÷16000 KPA)
- Al24 Probe 7 read out at 4mA/0,5V (only IPRC215D) (-1.00-Ai25 bar, -14.5+Ai25 PSI, -100+Ai25KPA)
- Al25 Probe 7 read out at 20mA/4,5V- (only IPRC215D) (Ai24÷160 bar, Ai24÷ 2320, Ai24÷16000 KPA)
- Al26 Probe 8 read out at 4mA/0,5V (only IPRC215D) (-1.00-Ai27 bar, -14.5÷Ai27 PSI, -100÷Ai27KPA)
- Al27 Probe 8 read out at 20mA/4,5V- (only IPRC215D) (Ai26÷160 bar, Ai26÷2320, Ai26÷16000 KPA)
- Al28 Probe 9 read out at 4mA/0,5V (only IPRC215D) (-1.00-Ai29 bar, -14.5+Ai29 PSI, -100+Ai29KPA)
- Al29 Probe 9 read out at 20mA/4,5V (only IPRC215D) (Ai28÷160 bar, Ai28÷2320, Ai28÷16000 KPA)
- Al30 Probe 10 read out at 4mA/0,5V (only IPRC215D) (-1.00-Ai31 bar, -14.5;-Ai31 PSI, -100;-Ai31KPA)
- Al31 Probe 10 read out at 20mA/4,5V (only IPRC215D) (Ai30÷160 bar, Ai30÷2320, Ai30÷16000 KPA)

AI32-AI38 Probe 11-17 calibration (IPX 4 din)

- Range: -12.00÷12.00 bar; 12.0÷12.0 °C; -120÷120 PSI; -120÷120 °F; -1200÷1200 KPA; -1600÷1600 PPM (if the probe is "4-20mA Gas Leak Detector"); -20%÷120% (if the probe is "0-5V Liquid level"); -1.000 ÷ 1.000 V; -2.000 ÷ 2.000 mA
- UM: according to CF26

AI39 Probe 11 value at 4mA/0V/1V (IPX 4 din)

- Range: -1.00÷Al40 bar; -15÷Al40 PSI; -100÷Al40 KPA; 0÷Al40 PPM (if the probe is "4-20mA Gas Leak Detector"); -20%÷Al40 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

Al40 Probe 11 value at 20mA/5V/5V (IPX 4 din)

- Range: Al39÷160.00 bar; Al39÷2320 PSI; Al39÷16000 KPA; Al39÷50000 PPM (if the probe is "4-20mA Gas Leak Detector"); Al39÷120 % (if the probe is "0-5V Liquid level")
 UM: according to CF26
-

AI51 Probe 17 value at 4mA/0V/1V (IPX 4 din)

- Range: -1.00+AI52 bar; -15+AI52 PSI; -100+AI52 KPA; 0+AI52 PPM (if the probe is "4-20mA Gas Leak Detector"); -20%+AI52 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

AI52 Probe 17 value at 20mA/5V/5V (IPX 4 din)

- Range: Al51÷160.00 bar; Al51÷2320 PSI; Al51÷16000 KPA; Al51÷50000 PPM (if the probe is "4-20mA Gas Leak Detector"); Al51÷120 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

AI53-AI62 Probe 18-27 calibration (IPX 10 din)

- Range: -12.00÷12.00 bar; 12.0÷12.0 °C; -120÷120 PSI; -120÷120 °F; -1200÷1200 KPA; -1600÷1600 PPM (if the probe is "4-20mA Gas Leak Detector"); -20%÷120% (if the probe is "0-5V Liquid level"); -1.000÷ 1.000 V; -2.000 ± 2.000 mA
- UM: according to CF26

AI63 Probe 18 value at 4mA/0V/1V (IPX 10 din)

- Range: -1.00+Al64 bar; -15+Al64 PSI; -100+Al64 KPA; 0+Al64 PPM (if the probe is "4-20mA Gas Leak Detector"); -20%+Al64 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

AI64 Probe 18 value at 20mA/5V/5V (IPX 10 din):

- Range: Al63÷160.00 bar; Al63÷2320 PSI; Al63÷16000 KPA; Al63÷50000 PPM (if the probe is "4-20mA Gas Leak Detector"); Al63+120 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

.

AI81 Probe 27 value at 4mA/0V/1V (IPX 10 din)

- Range: -1.00+Al82 bar; -15+Al82 PSI; -100+Al82 KPA; 0+Al82 PPM (if the probe is "4-20mA Gas Leak Detector"); -20%-Al82 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

AI82 Probe 27 value at 20mA/5V/5V (IPX 10 din):

- Range: Al81÷160.00 bar; Al81÷2320 PSI; Al81÷16000 KPA; Al81÷50000 PPM (if the probe is "4-20mA Gas Leak Detector"); Al81+120 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

Al83-Al84 Probe 28-29 calibration (XEV20_1)

Range: -12.00÷12.00 bar; 12.0÷12.0 °C; -120÷120 PSI; -120÷120 °F; -1200÷1200 KPA;

UM: according to CF26

AI85-AI86 Probe 30-31 calibration (XEV20_1)

- Range: -12.00÷12.00 bar; 12.0÷12.0 °C; -120÷120 PSI; -120÷120 °F; -1200÷1200 KPA; -1600÷1600 PPM (if the probe is "4-20mA Gas Leak Detector"); -20%÷120% (if the probe is "0-5V Liquid level") ; -1.000÷ 1.000 V; -2.000 ÷ 2.000 mA
- UM: according to CF26

AI87 Probe 30 value at 4mA/0V/1V (XEV20_1)

- Range: -1.00÷Al88 bar; -15÷Al88 PSI; -100÷Al88 KPA; 0÷Al88 PPM (if the probe is "4-20mA Gas Leak Detector"); 0%÷Al88 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

Al88 Probe 30 value at 20mA/5V/5V (XEV20_1):

- Range: Al87÷160.00 bar; Al87÷2320 PSI; Al87÷16000 KPA; Al87÷50000 PPM (if the probe is "4-20mA Gas Leak Detector"); Al87+100 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

Al89 Probe 31 value at 4mA/0V/1V (XEV20_1)

- Range: -1.00÷Al90 bar; -15÷Al90 PSI; -100÷Al90 KPA; 0÷Al90 PPM (if the probe is "4-20mA Gas Leak Detector"); 0%÷Al90 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

Al90 Probe 31 value at 20mA/5V/5V (XEV20_1):

- Range: Al89÷160.00 bar; Al89÷2320 PSI; Al89÷16000 KPA; Al89÷50000 PPM (if the probe is "4-20mA Gas Leak Detector"); Al89+100 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

AI91-AI92 Probe 32-33 calibration (XEV20_2)

Range: -12.00÷12.00 bar; 12.0÷12.0 °C; -120÷120 PSI; -120÷120 °F; -1200÷1200 KPA; UM: according to CF26

AI93-AI94 Probe 34-35 calibration (XEV20_2)

- Range: -12.00÷12.00 bar; 12.0÷12.0 °C; -120÷120 PSI; -120÷120 °F; -1200÷1200 KPA; -1600÷1600 PPM (if the probe is "4-20mA Gas Leak Detector"); -20%÷120% (if the probe is "0-5V Liquid level") ; -1.000÷ 1.000 V; -2.000 + 2.000 mA
- UM: according to CF26

Al95 Probe 34 value at 4mA/0V/1V (XEV20_2)

- Range: -1.00+AI96 bar; -15+AI96 PSI; -100+AI96 KPA; 0+AI96 PPM (if the probe is "4-20mA Gas Leak Detector"); 0%+AI96 % (if the probe is "0-5V Liquid level")
- IJМ according to CF26

AI96 Probe 34 value at 20mA/5V/5V (XEV20 2):

AI95+160.00 bar; AI95+2320 PSI; AI95+16000 KPA; AI95+50000 PPM (if the probe is "4-20mA Gas Range: Leak Detector"): AI95+100 % (if the probe is "0-5V Liquid level") UM: according to CF26

AI97 Probe 35 value at 4mA/0V/1V (XEV20 2)

- Range: -1.00+Al98 bar: -15+Al98 PSI: -100+Al98 KPA: 0+Al98 PPM (if the probe is "4-20mA Gas Leak Detector"); 0%+AI98 % (if the probe is "0-5V Liquid level")
- UM: according to CF26

A198 Probe 35 value at 20mA/5V/5V (XEV20 2):

- Range: AI97÷160.00 bar; AI97÷2320 PSI; AI97÷16000 KPA; AI97÷50000 PPM (if the probe is "4-20mA Gas Leak Detector"); AI97÷100 % (if the probe is "0-5V Liquid level") IJМ
- according to CF26

6.1.8 Safety digital Inputs (SD1-SD3)

Note: SDI1 and SDI3 take effect also to the parallel compressor digital input alarms.

SDI1 Manual reset of compressor alarms.

no = automatic recover of alarm: the regulation will restart when the correspondent digital Input is disabled

yES = manual recover for the compressors alarms

SDI2 Manual reset of fan alarms.

no = automatic recover of alarm: the fan willrestarts when the correspondent digital Input is disabled yES = manual recover for the alarms of fan

SDI3 Relay activated in case of compressor or fan alarms:

nu = no relay activation, only visual signalling; Alr: all the C(i) Inputs set as ALr; ALr1: all the C(i) Inputs set as ALr1, ALr2: all the C(i) Inputs set as ALr2

SDI4 Loads de-activation in case of phase fail digital input alarm

Range: 0+1

- 0: no = the phase fail produces only a warning, only visual signalling
- 1: ves: all the loads are switched off

6.1.9 Digital Inputs for liquid level (CDI1-CDI4)

- CDI1 Delay of Low Liquid level digital Input - circuit 1 (0 ÷ 255 min)
- CDI2 Delay of Low Liquid level digital Input - circuit 1 (0 ÷ 255 min)
- CDI3 Relay activated in case of flash tank liquid level alarm - circuit 1 nu = no relay activation, only visual signalling; Alr: all the C(i) Inputs set as ALr; ALr1: all the C(i) Inputs set as ALr1, ALr2: all the C(i) Inputs set as ALr2
- CDI4 Relay activated in case of flash tank liquid level alarm - circuit 2 nu = no relay activation, only visual signalling; AIr: all the C(i) Inputs set as ALr; ALr1: all the C(i) Inputs set as ALr1, ALr2: all the C(i) Inputs set as ALr2

6.1.10 Compressor Action (RC1-RC8, RC25)

RC1 Regulation band width for compressors- circuit 1 (0.10÷10.00 bar: 0.1÷25.0°C. 1÷80PSI. 1÷50°F: 10÷1000 KPA) The band is symmetrical compared to the target set point, with extremes: SETC1+(RC1)/2 ... SETC1-(RC1)/2. The measurement unit depends on the CF26 par.

- RC2 Minimum compressor set point circuit 1 (-1 ÷ SETC1 bar; -70.0 ÷ SETC1 °C; -15.0 ÷ SETC1 Psi; -94.0 ÷ SETC1 °F; -100 ÷ SETC1 Kpa). The measurement unit depends on CF26 parameter. It sets the minimum value that can be used for the compressor set point, to prevent the end user from setting incorrect values.
- RC3 Maximum compressor set point circuit 1 (SETC1 ÷100.00 bar; SETC1 ÷150. 0 °C; SETC1 ÷1450 Psi; SETC1 ÷302 °F; SETC1 ÷10000 Kpa). The measurement unit depends on CF26 parameter. It sets the maximum acceptable value for compressor set point.
- RC4 Compressor energy saving value circuit 1 (-20.00÷20.00 bar; -50.0÷50.0 °C; -300÷300 Psi; -90÷90 °F; -2000÷2000 Kpa) this value is add to the compressor set point when the energy saving is enabled.
- RC5 Regulation band width for compressors- circuit 2 (0.10÷10.00 bar; 0.1÷25.0°C, 1÷80PSI, 1÷50°F; 10÷1000 KPA) The band is symmetrical compared to the target set point, with extremes: SETC1+(RC1)/2 ... SETC1-(RC1)/2. The measurement unit depends on the CF26 par.
- RC6 Minimum compressor set point circuit 2 (-1 ÷ SETC2 bar; -70.0 ÷ SETC2 °C; -15.0 ÷ SETC2 Psi; -94.0 ÷ SETC2 °F; -100 ÷ SETC2 Kpa). The measurement unit depends on CF26 parameter. It sets the minimum value that can be used for the compressor set point, to prevent the end user from setting incorrect values.
- RC7 Maximum compressor set point circuit 2 (SETC2 ÷100.00 bar; SETC2 ÷150. 0 °C; SETC2 ÷1450 Psi; SETC2 ÷302 °F; SETC2 ÷10000 Kpa). The measurement unit depends on CF26 parameter. It sets the maximum acceptable value for compressor set point.
- RC8 Compressor energy saving value circuit 2 (-20.00÷20.00 bar; -50.0÷50.0 °C; -300÷300 Psi; -90÷90 °F; -2000÷2000 Kpa) this value is add to the compressor set point when the energy saving is enabled.
- RC25 Regulation band width for parallel compressors The band is symmetrical compared to the target set point, with extremes: SETPC-(RC25)/2 ... SETPC+(RC25)/2. (0.10÷10.00 bar; 1÷80 PSI; 10÷1000 KPA, according to CF26 parameter)

6.1.11 Parallel Compression Regulation (PC1-PC10)

PC1 BY-PASS Valve percentage to activate parallel compression

It's the percentage used to enable parallel compression to move the regulation from BY-PASS valve to parallel compression.

If PC1 = 0, the parallel compression is ALWAYS ON. This means that the compressors can start without waiting for a certain % of BY-PASS (opening). The BY-PASS VALVE maintains its safety function operating at PC3. If the compressors are stopped caused to the safety delays, the regulation comes back to the standard regulation with GC20 as set point. Range: $0\div99\%$

PC2 Time with BY-PASS valve ≥ PC1 before the activatation of the parallel compression

If the BY-PASS VALVE valve remains open with a percentage equal or higher than PC1 for PC2 time, the BY-PASS valve will use the PC3 set point and the parallel compression is started. *Range*: 0+255 *UM*: sec

PC3 Pressure setpoint for BY-PASS valve when the parallel compression is activated

It's the pressure set point for BY-PASS valve when the parallel compression is activated. It replaces the GC20 flash tank pressure set point when the parallel compression is working *Range*: SETPC+500.00 bar; SETPC+7250 PSI; SETPC+50000 KPA *UM*: Always in Pressure, depending on the paremeter CF26: CF26 = CDEC: bar CF26 = F: PSI

CF26 = BAR: bar

CF26 = PSI: PSI CF26 = KPA: KPA CF26 = CKPA: KPA PC4 Minimum time between 2 following switching ON of the same parallel compressor Range: 0+1000 UM: min PC5 Minimum time between the switching OFF of a parallel compressor and the following switching ON Range: 0+1000 UM: min PC6 Time delay between the insertion of two different parallel compressors Range: 1+5990 UM: sec PC7 Time delay between switching OFF of two different parallel compressors Range: 1÷5990 UM: sec PC8 Minimum time parallel compressor ON Range: 1÷5990 UM: sec PC9 Regulation band of the parallel compression inverter It is the band with the proportional action. It replaces RC57 for the inverter regulation. It is accross the set point SETPC. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the AOX 13 when the pressure/temperature is equal or higher than SETPC + PC9. Range: 0.10+10.00bar; 1+80 PSI; 10+1000 KPA Always in Pressure, depending on the paremeter CF26: UM: CF26 = CDEC: (bar) CF26 = F: (PSI) CF26 = BAR: bar (°C) CF26 = PSI: PSI (°F) CF26 = KPA: KPA (°C) CF26 = CKPA: (KPA) PC10 Band offset of the parallel compression inverter It is used to move the regulation band across to the set point. Range: -12.00 ÷ 12.00 BAR, -120÷120PSI; 1200÷1200KPA Always in Pressure, depending on the paremeter CF26: UM: CF26 = CDEC: (bar) CF26 = F: (PSI) CF26 = BAR: bar (°C) CF26 = PSI: PSI (°F) CF26 = KPA: KPA (°C) CF26 = CKPA: (KPA)

<u>Note:</u> If AOC3 = 25, the parameters used for the inverter of parallel compressions are: $AO3_1...AO3_26$, and the exception to this is: instead use $AO3_17$, PC9 is used, instead use $AO3_19$, PC10 is used

PC11 Disable Parallel compression with heat reclaim ON 0= NO 1=YES

6.1.12 Safety Compressors (SL1- SL11& SL14-SL24)

SL1 Minimum time between 2 following switching ON of the same compressor (0÷255 min).

- SL2 Minimum time between the switching off of a compressor and the following switching on. (0÷255min). Note: usually SL1 must be greater than SL2.
- SL3 Time delay between the insertion of two different compressors (0 ÷ 5990 sec)
- SL4 Time delay between switching off of two different compressors (0 ÷ 5990 sec)
- SL5 Minimum time load on $((0 \div 5990 \text{ sec}))$
- **SL6** Maximum time load on (0 ÷ 24 h; with 0 this function is disabled.) If a compressor keeps staying on for the SL6 time, it is switched off and it can restart after the SL2 standard time or after the SL7 time with frequency compressor.
- SL7 Minimum time a frequency compressor stays off after SL6 time (0÷255 min)
- SL8 SL3 delay enabled also for the first call. If enabled, the step triggering is delayed for a "SL3" time, respect to the call. no = "SL3" not enabled; yES="SL3" enabled
- SL9 SL4 delay enabled also for the first off. If enabled, the step triggering is delayed for a "SL4" time, respect to the call. no = "SL4" not enabled; yES="SL4" enabled
- SL10 Input delay at power on (0 ÷ 255 sec)

SL11 Booster function enabled

no = compressors of Circuits 1 and 2 work independently **yES** = if at least one compressor of the Circuit 2 (BT) is ON, also one compressor of the Circuit 1 (TN) is enabled, independently from the pressure of the Circuit 1. This ensures that the gas coming from the Circuit 2 is suct by the compressors of the Circuit 1.

- SL14 Maximum time the booster function is enabled (5÷999s) It defines the maximum time the booster function is active, after a compressor of circuit 2 (LT) has started. After SL14 the standar regulation for circuit 1 (NT) is restored
- SL15 Automatic switch off of compressors of circuit 2, with booster function on and none compressor of circuit 1 available (yes, no). This situation is signalled also with "boost" warning. See alarm table
- SL16 Minimum time between 2 following switching ON of the same compressor circuit 2 ($0\div255$ min).
- SL17 Minimum time between the switching off of a compressor and the following switching on- circuit 2 (. (0+255min). Note: usually SL1 must be greater than SL2.
- SL18 Time delay between the insertion of two different compressors circuit 2 ((1 ÷ 5990 sec)
- SL19 Time delay between switching off of two different compressors circuit 2 ((1 ÷ 5990 sec)
- SL20 Minimum time load on circuit 2 (1 ÷ 5990 sec)
- SL21 SL18 delay enabled also for the first call Circuit 2. If enabled, the step triggering is delayed for a "SL16" time, respect to the call. no = "SL16" not enabled; yES="SL16" enabled
- SL22 SL19 delay enabled also for the first off Circuit 2. If enabled, the step triggering is delayed for a "SL17" time, respect to the call. no = "SL17" not enabled; yES="SL17" enabled
- SL23 Minimum time a frequency compressor stays off circuit2

0÷255min

SL24 Fan pre-start before first compressor activation enabling Range: 0÷1 0=NO, function disabled

1=YES, function enabled

6.1.13 Fan Action (RC9-RC16, RC31-RC34, RC43-RC44, RC49-52)

- RC9 Regulation band width for fans circuit 1: (0.10÷10.00 bar; 0.1÷30.0 °C, 1÷80 Psi, 1÷50°F; 10÷1000 Kpa) Set the CF26 par. and the target set point for fans before setting this parameter. The band is symmetrical compared to the fan target set point, with extremes: SETF1-(RC9)/2 ... SETF1+(RC9)/2. The measurement unit depends on the CF26 par.
- RC10 Minimum fan set point circuit 1: (-1 ÷ SETF1 bar ; -50.0 ÷ SETF1 °C; -15.0 ÷ SETF1 Psi ; -94 ÷ SETF1 °F; -100 ÷ SETF1 Kpa). The measurement unit depends on C45 parameter. It sets the minimum value that can be used for the fan set point, to prevent the end user from setting incorrect values.
- RC11 Maximum fan set point circuit 1 : (SETF1÷100.00 bar; SETF1÷150.0 °C; SETF1÷1450 Psi; SETF1÷302 °F; SETF1÷10000 Kpa) The measurement unit depends on CF26 parameter. It sets the maximum acceptable value for fan set point.
- RC12 Fan energy saving value circuit 1 (-20.00÷20.00 bar; -50.0÷50.0 °C; -300÷300 Psi; -90÷90 °F; -2000÷2000 Kpa) this value is add to the fan set point when the energy saving is enabled.
- RC13 Regulation band width for fans circuit 2: (0.10÷10.00 bar; 0.1÷30.0 °C, 1÷80 Psi, 1÷50°F; 10÷1000 Kpa)

Set the CF26 par. and the target set point for fans before setting this parameter. The band is symmetrical compared to the fan target set point, with extremes: SETF2-(RC13)/2 ... SETF2+(RC13)/2. The measurement unit depends on the CF26 par.

- RC14 Minimum fan set point circuit 2: (-1 ÷ SETF1 bar ; -50.0 ÷ SETF1 °C; -15.0 ÷ SETF1 Psi ; -94 ÷ SETF1 °F; -100 ÷ SETF1 Kpa). The measurement unit depends on C45 parameter. It sets the minimum value that can be used for the fan set point, to prevent the end user from setting incorrect values.
- RC15 Maximum fan set point circuit 2: (SETF1÷100.00 bar; SETF1÷150.0 °C; SETF1÷1450 Psi; SETF1÷302 °F; SETF1÷10000 Kpa) The measurement unit depends on CF26 parameter. It sets the maximum acceptable value for fan set point.
- RC16 Fan energy saving value circuit 2 (-20.00÷20.00 bar; -50.0÷50.0 °C; -300÷300 Psi; -90÷90 °F; -2000÷2000 Kpa) this value is add to the fan set point when the energy saving is enabled.
- 2000÷2000 Kpa) this value is add to the fan set point when the energy saving is enabled RC31 Inverter Fan circuit1 management mode.

Range: 0÷1 0=Direct Acting 1=Reverse Acting

AOCx=

0-10V output inverter condenser Circuit 1		
0-10V output inverter condenser Circuit 2		
0-10V output inverter condenser free Circuit 1		
0-10V output inverter condenser free Circuit 2		
4-20mA output inverter condenser Circuit 1		
4-20mA output inverter condenser Circuit		
4-20mA output inverter condenser free Circuit 1		
4-20mA output inverter condenser free Circuit 2		

RC32 Inverter Fan circuit2 management mode.

Range: 0÷1 0=Direct Acting 1=Reverse Acting (Same AOCx as RC31)

- RC33 Fan heat reclaim value Circuit 1 (-20.00÷20.00 bar; -50.0÷50.0 °C; -300÷300 Psi; -90÷90 °F; -2000÷2000 Kpa) this value is add to the fan set point when the heat reclaim DI is active.
- RC34 Fan heat reclaim value Circuit 2 (-20.00÷20.00 bar; -50.0÷50.0 °C; -300÷300 Psi; -90÷90 °F; -2000÷2000 Kpa) this value is add to the fan set point when the heat reclaim DI is active.

RC49 Analog output setting for condenser fan management with adiabatic spray enabled Range: 0÷2

- 0:
 - No limitation
 - 1: Analog output limited to AOx_20
 - 2: Fix at AOx_20
- RC50 Tempearature Set point (to stop) adiabatic spray
- Range: 0.0÷50°C; 32.0÷122 °F;
- UM: according to CF26
- RC51 Differential for adiabatic spray regulation
- It is added to the set point RC50 Range: 0.1÷25.0°C: 1÷50°F
- UM: according to CF26
- UM: according to CF26
- RC52 Adiabatic function disabled during heat reclaim

Range: 0÷1

0=NO, adiabatic function is enabled also during heat reclaim 1=YES, adiabatic function is disabled in case of heat reclaim

6.1.14 Safety Fans (SL12- SL13)

- SL12 Time delay between the insertion of two different fans (1 ÷ 255 sec)
- SL13 Time delay between switching off of two different fans (1 ÷ 255 sec)

6.1.15 Configuring the temperature/pressure alarms (AC1-AC2)

AC1 Relative/absolute compressor alarms

REL = pressure/temperature alarms associated with the setpoint. In this case, the alarm threshold is added/deducted from the respective setpoint.

E.g. suction high temperature alarm 1. The alarm threshold is SETC1+ AL4.

ABS = alarms with absolute pressure/temperature values. In this case, the alarm threshold is determined by the alarm parameter value.

E.g. high temperature alarm for suction 1. The alarm threshold is AL4

AC2 Relative/absolute fan alarms

REL = pressure/temperature alarms associated with the setpoint. In this case, the alarm threshold is added/deducted from the respective setpoint.

E.g. condensation high temperature alarm 1. The alarm threshold is SETF1+ AF2

NOTE1 for CO2 applications only absolute alarms are available.

NOTE2 for CO2 applications only pressure alarms are available.

ABS = alarms with absolute pressure/temperature values. In this case, the alarm threshold is determined by the alarm parameter value.

E.g. condensation high temperature alarm 1. The alarm threshold is AL25

NOTE2 for CO2 applications only pressure, absolute alarms are available

6.1.16 Compressor Alarms (AL1-AL23)

- AL1 Suction Probe 1 alarm exclusion at power on (0 ÷ 255 min) it is the period starting from instrument switch on, before an alarm probe is signalled. During this time if the pressure is out of range all the compressor are switched on.
- AL2 Suction Probe 2 alarm exclusion at power on (0 ÷ 255 min) it is the period starting from instrument switch on, before an alarm probe is signalled. During this time if the pressure is out of range, all the compressor are switched on.
- AL3 Low pressure (temperature) alarm for compressors circuit 1: (0.10 ÷ 30.00bar; 0.0 ÷ 100.0°C; 1÷430 PSI; 1÷200.0°F; 10 ÷ 3000KPA)

With AC1 = ABS: -1.00 to AL4 bar; -50 to AL4°C; -14 to AL4 Psi; -58 to AL4°F; -100 to AL4 Kpa) The measurement unit depends on CF26 parameter.

With AC1 = REL If the pressure (temperature) falls below the "SETC1-AL3" value, the "Low alarm – Suction 1" is activated at the end of the AL5 period of time.

With AC1 = ABS If the pressure (temperature) falls below the "AL3" value, the "Low alarm – Suction 1" is activated at the end of the AL5 period of time.

AL4 High pressure (temperature) alarm for compressors – circuit 1: (With AC1 = REL 0.10 to 30.00 bar; 0.0 to 100.0 °C; 1 to 430 PSI; 1 to 200.0 °F; 10 to 30000 KPA
With AC1 = ABS: AL3 to 100.00 bar; AL3 to 150 °C; -AL3 to 1450 Psi; AL3 to 230 °F; AL3 to 10000 Kpa). The measurement unit depends on CF26 parameter.
With AC1 = REL if the pressure (temperature) exceeds the "SETC1+AL4" value, the "High alarm –

With AC1 = REL If the pressure (temperature) exceeds the "SETC1+AL4" value, the "High alarm – Suction 1" is activated at the end of the AL5 period of time.

With AC1 = ABS If the pressure (temperature) exceeds the "AL4" value, the "High alarm – Suction 1" is activated at the end of the AL5 period of time.

AL5 Low and High compressor pressure (temperature) alarms delay – circuit 1 (0÷255 min) time interval between the detection of a pressure (temperature) alarm condition and alarm signalling.

AL6 Low pressure (temperature) alarm for compressors – circuit 2: (With AC1 = REL: 0.10 to 30.00 bar; 0.0 to 100.0 °C; 1 to 430 PSi; 1 to 200.0 °F; 10 to 3000 Kpa With AC1 = ABS: -1.00 to AL7 bar; -50 to AL7 °C; -14 to AL7 PSi; -58 to AL7 °F; -100 to AL7 Kpa) The measurement unit depends on CF26 parameter.

With AC1 = REL if the pressure (temperature) falls below the "SETC2-AL6" value, the "Low alarm – Suction 2" is activated at the end of the AC8 period of time.

With AC1 = ABS If the pressure (temperature) falls below the "AL6" value, the "Low alarm – Suction 2" is activated at the end of the AL8 period of time.

AL7 High pressure (temperature) alarm for compressors – circuit 2: (With AC1 = REL 0.10 to 30.00 bar; 0.0 to 100.0 °C; 1 to 430 Psi; 1 to 200.0 °F; 10 to 3000 Kpa

With AC1 = ABS: AL6 to 100.00 bar; AL6 to 150 °C; -AL6 to 1450 Psi; AL6 to 230 °F; AL6 to 10000 Kpa). The measurement unit depends on CF26 parameter.

With AC1 = REL If the pressure (temperature) exceeds the "SETC2+AL7" value, the "High alarm – Suction 2" is activated at the end of the AL8 period of time.

With AC1 = ABS If the pressure (temperature) exceeds the "AL7" value, the "High alarm – Suction 2" is activated at the end of the AL8 period of time.

- AL8 Low and High compressor pressure (temperature) alarms delay circuit 2 (0÷255 min) interval time between the detection of a pressure (temperature) alarm condition and alarm signalling.
- AL9 Relay activated in case of pressure (temperature) alarm nu = no relay activation, only visual signalling; AIr: all the C(i) Inputs set as ALr; ALr1: all the C(i) Inputs set as ALr1, ALr2: all the C(i) Inputs set as ALr2
- AL10 Service request: (0÷25000h with 0 the function is disabled) number of running hours after that maintenance warning is generated
- AL11 Relay activated in case of service request alarm

nu = no relay activation, only visual signalling; **AIr:** all the C(i) Inputs set as ALr; **ALr1:** all the C(i) Inputs set as ALr1, **ALr2:** all the C(i) Inputs set as ALr2

- AL12 Low pressure-switch intervention numbers circuit 1: (0÷15). Every time the pressure-switch is activated all the compressors of the circuit 1 are turned off. If the low pressure-switch is activated AL12 times in the AL13 interval, the compressors of the first circuit are switched off and only the manually unlocking is possible.
- AL13 Pressure-switch interventions time (0:255 min) circuit 1 Interval, linked to the AL12 parameter, for counting interventions of the low pressure-switch.
- AL14 Number of steps engaged with suction probe 1 faulty (0 ÷ 15)
- AL16 Low pressure-switch intervention numbers circuit 2: (0÷15). Every time the pressure-switch is activated all the compressors of the circuit 2 are turned off. If the low pressure-switch is activated AL16 times in the AL17 interval, the compressors of the second circuit are switched off and only the manually unlocking is possible.
- AL17 Pressure-switch interventions time (0:255 min) circuit 2 Interval, linked to the AL16 parameter, for counting interventions of the low pressure-switch.
- AL18 Number of steps engaged with suction probe 2 faulty (0 ÷ 15)
- AL20 Electronic pressure switch activation for circuit 1 NO = electronic pressure switch not enabled YES = electronic pressure switch enabled SCO = (Stop Compressor Only) electronic pressure switch enabled but without giving any alarm Note: In case SCO, the parallel compressors will follow their regulation.
- AL21 Pressure/temperature threshold of compressor set for circuit 1 (-1 ÷ SETC1 Bar ; -70.0 ÷ SETC1 °C; -15 ÷ SETC1 Psi; -94 ÷ SETC1 °F; -100 ÷ SETC1 Kpa;)
- AL22 Enabling the electronic pressure switch for circuit 2 NO = electronic pressure switch not enabled YES = electronic pressure switch enabled SCO = (Stop Compressor Only) electronic pressure switch enabled but without giving any alarm Note: In case SCO, the parallel compressors will follow their regulation.
- AL23 Pressure/temperature threshold of compressor set for circuit 2 (-1 ÷ SETC2 Bar; -70.0 ÷ SETC2 °C; -15 ÷ SETC2 Psi; -94 ÷ SETC2 °F; -100 ÷ SETC2 Kpa;)

6.1.17 Fan Alarms (AL24-AL46)

AL24 Low pressure (temperature) alarm for fans – circuit 1:

With AC2 = ABS: If the pressure (temperature - not available for CO2 applcations) falls below the "AL24" value, the "Low alarm – Condensation 1" is activated at the end of the AL26 period of time". *Range:* -1.00 to AL25 bar; -50 to AL25 °C; -14 to AL25 Psi; -58 to AL25 °F; -100 to AL25 Kpa *UM*: according to CF26

With AC2 = REL: - NOT AVAILABLE FOR CO2 APPLICATIONS - If the pressure (temperature) falls below the "SETF1-AL24" value, the "Low alarm – Condensation 1" is activated at the end of the AL26 period of time. Range: 0.10 ÷ 30.00 bar; 0.0 ÷ 100.0 °C; 1÷430 Psi; 1÷200.0 °F; 10 ÷ 3000 Kpa

Range: 0.10 ÷ 30.00 bar; 0.0 ÷ 100.0 °**C**; 1÷430 **Psi**; 1÷200.0 °**F**; 10 ÷ 3000 **Kpa** *UM*: according to CF26

AL25 High pressure (temperature) alarm for fans- Circuit 1

With AC2 = ABS: If the pressure (temperature - not available for CO2 applcations) exceeds the "AL25" value, the "High alarm – Condensation 1" is activated at the end of the AL26 period of time *Range:* AL24 to 150.00 bar; AL24 to 150 °C; AL24 to 2176 Psi; AL24 to 302 °F; AL24 to 15000 Kpa *UM*: according to CF26
NOTE: This alarm work in parallel with GC19 Pressure value near HP cut out alarm. Set AL25 higher than GC19, for a proper working.

With AC2 = REL: - NOT AVAILABLE FOR CO2 APPLICATIONS If the pressure (temperature) exceeds the "SETF1+AL25" value, the "High alarm - Condensation 1" is activated at the end of the AL26 period of time. Range: 0.10 to 30.00bar: 0.0 to 100.0 °C: 1 to 430 PSI: 1 to 200.0°F: 10 to 3000KPA UM: according to CF26

- AL 26 Low and High fan pressure (temperature) alarms delay - circuit 1 (0:255 min) time interval between the detection of a pressure (temperature) alarm condition and alarm signalling.
- Compressors off with pressure (temperature) alarm for fans- circuit 1 AL27 **no** = compressors are not influenced by this alarm **vES** = compressors are turned off in case of high pressure (temperature) alarm of fans
- AL28 Interval between 2 compressors turning off in case of high pressure (temperature) alarm for fans - circuit 1 (0 ÷ 255 min)
- AL29 High pressure-switch intervention numbers - circuit 1: (0÷15). Every time the pressure-switch is activated all the compressors of the circuit 1 are turned off and the fan turned on. If the high pressureswitch is activated AL29 times in the AL30 interval, the compressors of the first circuit are switched off and the fans on, only the manually unlocking is possible.
- AL30 High pressure-switch interventions time (0;255 min) - circuit 1 Interval, linked to the AL29 parameter, for counting interventions of the high pressure-switch.
- AL31 Fans on with delivery probe faulty – circuit $1(0 \div 15)$

AL32 Low pressure (temperature) alarm for fans - circuit 2: (With AC2 = REL:0.10 ÷ 30.00 bar; 0.0 ÷ 100.0 °C; 1÷430 Psi; 1÷200.0 °F; 10 ÷ 3000 Kpa With AC2 = ABS: -1.00 to AL33 bar; -50 to AL33 °C; -14 to AL33 PSI; -58 to AL33 °F; -100 to AL33 KPA) The measurement unit depends on CF26 parameter. With AC2 = REL If the pressure (temperature) falls below the "SETF2-AL32" value, the "Low alarm -Condensation 2" is activated at the end of the AL34 period of time. With AC2 = ABS If the pressure (temperature) falls below the "AL32" value, the "Low alarm -Condensation 2" is activated at the end of the AL34 period of time.

AL33 High pressure (temperature) alarm for fans- circuit 2: (With AC2 = REL 0.10 to 30.00bar; 0.0 to 100.0°C; 1 to 430 PSI; 1 to 200.0°F; 10 to 3000KPA With AC2 = ABS AL32 to 110.00bar; AL32 to 150°C; AL32 to 1595 PSI; AL32 to 230°F; AL32 to 11000 KPA).

The measurement unit depends on CF26 parameter.

With AC2 = REL If the pressure (temperature) exceeds the "SETF2+AL33" value, the "Low alarm -Condensation 2" is activated at the end of the AL34 period of time.

With AC2 = ABS If the pressure (temperature) exceeds the "AL33" value, the "Low alarm -Condensation 2" is activated at the end of the AL34 period of time.

- AL34 Low and High fan pressure (temperature) alarms delay - circuit 2 (0÷255 min) time interval between the detection of a pressure (temperature) alarm condition and alarm signalling.
- AL35 Compressors off with pressure (temperature) alarm for fans- circuit 2 no = compressors are not influenced by this alarm yES = compressors are turned off in case of high pressure (temperature) alarm of fans
- AL36 Interval between 2 compressors turning off in case of high pressure (temperature) alarm for fans - circuit 2 (0 ÷ 255 min)
- AL37 High pressure-switch intervention numbers - circuit 2: (0+15). Every time the pressure-switch is activated all the compressors of the circuit 1 are turned off and the fan turned on. If the high pressureswitch is activated AL37 times in the AL38 interval, the compressors of the first circuit are switched off and the fans on, only the manually unlocking is possible.

- AL38 High pressure-switch interventions time (0÷255 min) circuit 2 Interval, linked to the AL37 parameter, for counting interventions of the high pressure-switch.
- AL39 Fans on with delivery probe faulty circuit $2(0 \div 15)$
- AL40 Relay activated in case of pressure (temperature) alarms of fans nu = no relay activation, only visual signalling; AIr: all the C(i) Inputs set as ALr; ALr1: all the C(i) Inputs set as ALr1, ALr2: all the C(i) Inputs set as ALr2

6.1.18 Min and max analog liquid level in % and delay (AL47-AL52)

- AL47 Min Liquid level. Range: 0÷AL48 UM: %
- AL48 Max Liquid level. Range: AL47÷100 UM: %
- AL49 Delay to signal LL and HL alarm. Range: 0÷255 UM: min This parameter is used only for Low liquid level alarm into flash tank from analog input, for low liquid level from digital input, the delay is CDI1.
- AL50 Differential for liquid level alarm recovery. Range: 0÷25 UM: %
- AL51 LT, MT and Parallel compressors shut down in case of Max Liquid level alarm in flash tank. Range: no, yes UM: num

NOTE: all the compressors are shut off with interval of 1s AL52 High flash tank liquid level alarm delay Range: 0÷5000 UM: sec Resolution: 10 sec This parameter is used both for High liquid level alarm from di

This parameter is used both for High liquid level alarm from digital input (DIC xx = 226) and for High liquid level alarm from analog input: AICxx = 135 > AL48

6.1.19 Dynamic Setpoint Suction (DSP1- DSP8)

DSP1 Dynamic compressor set point function enabled - circuit 1

no = standard regulation

yES = the SETC1 varies according to the setting of DSP2, DSP3, DSP4.

Warning the dynamic set point requires a dedicated probe, so it is necessary one of the probes is set for this function.

NOTE: if more than one probe is used for the optimization of the suction set point, only the last probe defined is considered.(ex: if the analog input 1 is configurated as optimization of suction set point and also the analog input 2 ;the probe is used is the probe 2)

- **DSP2** Maximum compressor set point circuit 1 (SETC1÷RC3) It sets the maximum value of compressor set point used in the dynamic set point function. The measurement unit depends on CF26 parameter.
- **DSP 3** External temperature for maximum set point DSP2- circuit 1 (-40÷DSP4 °C /-40÷DSP4°F) It is the temperature detected by the external probe, at which the maximum set point is reached.
- DSP 4 External temperature for standard set point-circuit 1 (DSP3÷150°C DSP 3÷302°F)

DSP5 Dynamic compressor set point function enabled - circuit 2

no = standard regulation

yES = the SETC2 varies according to the setting of DSP6, DSP7, DSP8.

WARNING the dynamic set point requires a dedicated probe, it isone probe must be set up for this function

NOTE: if more than one probe is used for the optimization of the suction set point, only the last probe defined is considered.(ex: if the analog input 1 is configurated as optimization of suction set point and also the analog input 2 ;the probe is used is the probe 2)

- DSP 6 Maximum compressor set point circuit 2 (SETC2÷RC7) It sets the maximum value of compressor set point used in the dynamic set point function. The measurement unit depends on CF46 parameter.
- **DSP 7** External temperature for maximum set point O6 circuit 2 (-40÷DSP8 °C /-40÷DSP8 °F) Iti is the temperature detected by the external probe, at which the maximum set point is reached.
- DSP 8 External temperature for standard set point-circuit 2 (DSP7÷150°C DSP 7÷302°F)
 - 1. with EXT temper. < DSP7 ==> "Real SEtC2" = DSP6
 - 2. with EXT temper. > DSP8 ==> "Real SEtC2" = SEtC2 with DSP7 < EXT temper < DSP8 ==> SEtC2 < "Real SEtC2" < DSP

6.1.20 Dynamic Setpoint Condenser (DSP9- DSP16)

DSP9 Dynamic set enabled for condenser- circuit 1

no = standard regulation

yES = the SETF1 varies according to the setting of DSP10, DSP11.

WARNING the dynamic set point requires a dedicated probe, one probe must be set up for this functionit is

DSP10 Minimum condenser set point - circuit 1 (RC10÷SETF1)

DSP11 Differential for condenser dynamic set point -circuit 1 - Subcritical

Range: DSP15÷50.0 °C; DSP15÷90 °F

The way of working of this algorithm is explained in the following exemplum.

Example

The ext temperature > SETF1-DSP11 ==> "real SEtF1" = SETF1 The ext temperature < DSP10-DSP11 ==> "real SetF1" = DSP10 DSP10- DSP11 < ext temperature < SETF1- DSP11 ==> DSP10 <"real SEtF1" < SEtF1

NOTE: if CF26 = bar or PSI or KPA, DSP11 is bar or PSI, the IProRACK makes the changes required <u>Note</u>: If AUX temperature probe fails, the fan set point of circuit1 is forced to DSP10

DSP12 Dynamic set enabled for condenser- circuit 2

no = standard regulation

yES = the SETF2 varies according to the setting of DSP13, DSP14. **WARNING** the dynamic set point requires a dedicated probe, one probe must be set up for this functionit is

DSP13 Minimum condenser set point - circuit 2 (RC14÷SETF2)

DSP14 Differential for condenser dynamic set point –circuit 2 (-50.0÷50.0°C; -90÷90°F). The way of working of this algorithm is explained in the following example.

Example

The ext temperature > SETF2-DSP14==>"real SetF2" = SETF2The ext temperature < DSP13-DSP14</td>==>"real SetF1" = DSP13DSP13-DSP14 < ext temperature < SETF2-DSP14</td>==>DSP13 < "real SetF2" < SetF2</td>

DSP15 Differential for condenser dynamic set point during transcritical mode - Circuit 1 -Range:(-50.0÷DSP11 °C; -90÷ DSP11 °F, according to CF26)

DSP16 Half Dead Band Width to join up DSP11 and DSP15 around the transcritical temperature

Range: 0.1÷50.0 °C; 1÷90 °F, according to CF26 When the circuit 1 dynamic set point for fan is enabled 2 differntiala are used: DSP11 in subcritical mode, DSP15 in transcritical mode Around the GC01 value, the 2 set points are joined according to the following formula: With Gas cooler outlet temperature detected by the probe AICxx = 154 or 155 < GC01-DSP16 → differential = DSP11 With Gas cooler outlet temperature detected by the probe AICxx = 154 or 155 > GC01+DSP16 → differential = DSP15 With Gas cooler outlet temperature: GC01-DSP16 =<AICxx = 154 or 155 =< GC01+DSP16 → DSP15=<differential =< DSP11

6.1.21 Analog Output 1 (AO1_1-AO1_26)

AO1_1 Reference probe for analogue Output 1

AO1_10DIN:

Range: 0÷9

- **0: Pb1** = (term. 2-7 (if the probe is configured as NTC PTC))
- 1: Pb2 = (term. 3-7 (if the probe is configured as NTC PTC))
- 2: Pb3 = (term. 4-7 (if the probe is configured as NTC PTC))
- 3: Pb4 = (term. 5-7 (if the probe is configured as NTC PTC))
- **4: Pb5** = (term. 6-7 (if the probe is configured as NTC PTC))
- 5: Pb6 = (term. 10-7 (if the probe is configured as NTC PTC))
- 6: Pb7 = (term. 11-7 (if the probe is configured as NTC PTC))
- 7: Pb8 = (term. 12-7 (if the probe is configured as NTC PTC))
- 8: Pb9 = (term. 13-7 (if the probe is configured as NTC PTC))
- 9: Pb10 = (term. 14-7 (if the probe is configured as NTC PTC))

AO1_2 Adjustment of read out for the analog Output 1

- Used with analog output set as "proportional", see AoC1.
- Range: -1.00÷100.00 bar; -15÷1450 PSI; -70÷150°C; -94÷302°F; -100÷10000 KPA
- UM: according to CF26

AO1_3 Adjustment of read out for the analog Output 1 at 20mA/10V Used with analog output set as "proportional", see AoC1. Range: -1.00÷100.00 bar; -15÷1450PSI; -70÷150°C; 94÷302°F; -100÷10000 KPA UM: according to CF26

- AO1_4 Minimum value for analogue Output 1
- Range: 0 ÷ AO1_13
- A01_5 Analog Output 1 value after compressor start It is the value of the analogue Output after a compressor has started, when the pressure/temperature is above the regulation band. – Used during inverter regulation Range: A01_4 ÷ A01_13
- AO1_6 Analog Output 1 value after a compressor is switched off It is the value of the analogue Output when a compressor has been switched off and the the pressure/temperature is below the regulation band. – Used during inverter regulation Range: AO1_4 ÷ AO1_13

AO1_7 Exclusion band start value for analog Output 1

it excludes a range of frequencies that could create problems to the compressor. – Used during inverter regulation Range: AO1 4 ÷ AO1 8

AO1 8 Exclusion band end value for analog Output 1

Used during inverter regulation Range: AO1_7 ÷ 99 %

AO1 9 Safety value for analog Output 1

it is used in case of probe's fault. Range: 0 ÷ AO1 13

AO1 10 Delay between the entrance in the regulation band and the regulation activation

it is the delay between the entrance in the regulation band of pressure/temperature and the regulation start. It is used to avoid false inverter starts due to pressure variations. - Used during inverter regulation. Range: 0 ÷ 255

UM sec

AO1_11 Analog Output 1 rise time

It is the time necessary to the analog Output to pass from the AO1 4 ÷ AO1 13 when a compressor has started and the pressure/temperature is above the regulation band. - Used during inverter reaulation. Range: 0 ÷ 255

UM: sec

AO1 12 Analog Output 1 permanency at AO1 13 before load activation

the analog Output remains at AO1 13 value for this time before a load is activated. - Used during inverter regulation Range: 0 ÷ 255 UM sec

AO1 13 Max value for analogue Output 1

Range: AO1_4 -100%

AO1_14 Analog Output 1 decreasing time

It is the time taken from the analog Output to pass from the AO1_13 to the AO1_4 value. It is used during the switching off phase, when the pressure is lower than the set point. Range: 0 ÷ 255 UM: sec

AO1_15 Analog Output 1 permanency at AO1_4 before a load is switched off

When the pressure (temperature) is below the set point, the analog Output remains at AO1 4 value for the AO1 15 before a load is switched off. Range: 0 ÷ 255 UM: sec

AO1 16 Analog Output 1 decreasing time when a load is switched on

It is the time necessary to the analog Output to pass from AO1_13 to AO1_5 when a load is Range: 0 ÷ 255

UM: sec

AO1_17 Regulation band

It is the band with the proportional action. It is accross the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the AO1 13 when the pressure/temperature is equal or higher than set + AO1 17.

Range: 0.10+10.00bar; 0.0+25.0°C; 1+80 PSI; 1+50°F;10+1000 KPA

UM: according to CF26

AO1 18 Integral time

It sets the pound of the proportional action. The higher is AO1_18, the lower is the integral action support.

- Range: 0+999
- 0: integral action excluded s
- UM.

AO1_19 Band offset.

It is used to move the regulation band across to the set point. *Range:* -12.0÷12.0°C -12.00 ÷ 12.00 BAR, -120÷120°F, -120÷120PSI; 1200÷1200KPA *UM:* according to CF26

AO1_20 (Maximum) value of A.O.1 during adiabatic spray Range: AO1_4 ÷ AO1_13 UM: %

- AO1_21 Maximum value of A.o.1 during silent mode Range: AO1_5/AO1_6 ÷AO1_13
- AO1_22 Minimum inverter capacity with poor lubrication If the frequency compressor works for the AO1_23 time with a frequency (in percentage) equal or lower than AO1_22 it is forced to work at AO1_13 for the AO1_24 time in order to force the right lubrication. *Range*: 0÷99% 0: function excluded
- AO1_23 Maximum inverter functioning time at a lower frequency than AO1_22, before working at AO1_13

Range: 1÷255 UM: min

AO1_24 Time of inverter functioning at AO1_13 to restore the right lubrication

Range: 1÷255 *UM*: min

- AO1_25 Maximum time, analog output 1 is off when AOC1 = 6 or 7 or 8 or 9 or 15 or 16 or 17 or 18 Range: 0.0÷24.0h; with 0 the function is disabled UM: 10min
- AO1_26 Time of analog output 1 at maximum AO1_13 when AO1_25 timer is over

Range: 1÷255

6.1.22 Analog Output 2 (AO2_1- AO2_26)

A02_1 Reference probe for analogue Output 2, it is used only when the analog Output is configured as FREE in the io.conf file

AO1_10DIN:

Range: 0÷9
0: Pb1 = (term. 2-7 (if the probe is configured as NTC PTC))
1: Pb2 = (term. 3-7 (if the probe is configured as NTC PTC))
2: Pb3 = (term. 4-7 (if the probe is configured as NTC PTC))
3: Pb4 = (term. 5-7 (if the probe is configured as NTC PTC))
4: Pb5 = (term. 6-7 (if the probe is configured as NTC PTC))
5: Pb6 = (term. 10-7 (if the probe is configured as NTC PTC))
6: Pb7 = (term. 11-7 (if the probe is configured as NTC PTC))
7: Pb8 = (term. 12-7 (if the probe is configured as NTC PTC))
8: Pb9 = (term. 13-7 (if the probe is configured as NTC PTC))
9: Pb10 = (term. 14-7 (if the probe is configured as NTC PTC))

AO2_2 Adjustment of read out for the analog Output

It is used only when the analog Output is configured as FREE in the io.conf file *Range:* -1.00÷100.00 bar; -15÷1450PSI; -70÷150°C; -94÷302°F; -100÷10000 KPA *UM:* according to CF26

AO2_3 Adjustment of read out for the analog Output 2 at 20mA/10V

It is used only when the analog Output is configured as FREE in the io.conf file Range: -1.00+100.00 bar; -15+1450PSI; -70+150°C; 94+302°F; -100+10000 KPA UM: according to CF26

AO2_4 Minimum value for analogue Output 2

Range: 0 ÷ AO2_13

AO2_5 Analog Output 2 value after compressor start

It is the value of the analogue Output after a compressor has started, when the pressure/temperature is above the regulation band. – Used during inverter regulation Range: $AO2_4 \div AO2_{13}$

AO2_6 Analog Output 2 value after a compressor is switched off

It is the value of the analogue Output when a compressor has been switched off and the the pressure/temperature is below the regulation band. – Used during inverter regulation Range: $AO2_4 \div AO2_{13}$

AO2_7 Exclusion band start value for analog Output 2

it excludes a range of frequencies that could create problems to the compressor. – Used during inverter regulation Range: AO2_4 ÷ AO2_8

AO2_8 Exclusion band end value for analog Output 2

Used during inverter regulation Range: AO2_7 ÷ 99 %

AO2_9 Safety value for analog Output 2 it is used in case of probe's fault. Range: 0 ÷ AO2_13

AO2_10 Delay between the entrance in the regulation band and the regulation activation

it is the delay between the entrance in the regulation band of pressure/temperature and the regulation start. It is used to avoid false inverter starts due to pressure variations. – Used during inverter regulation. Range: $0 \div 255$

UM: sec

AO2_11 Analog Output 2 rise time

It is the time necessary to the analog Output to pass from the AO2_4 \div AO2_13, when a compressor has started and the pressure/temperature is above the regulation band. – Used during inverter regulation. Range: 0 \div 255

UM: sec

AO2_12 Analog Output 2 permanency at AO2_13 before load activation

the analog Output remains at AO2_13 value for this time before a load is activated. – Used during inverter regulation Range: 0 ÷ 255 UM: sec

AO2_13 Max value for analogue Output 2

Range: AO2_4 -100%

AO2_14 Analog Output 2 decreasing time

It is the time taken from the analog Output to pass from the AO2_13 to the AO2_4 value. It is used during the switching off phase, when the pressure is lower than the set point. Range: $0 \div 255$ *UM*: sec

AO2_15 Analog Output 2 permanency at AO2_4 before a load is switched off

When the pressure (temperature) is below the set point, the analog Output remains at AO2_4 value for the AO2_15 before a load is switched off. Range: $0 \div 255$ *UM*: sec

AO2_16 Analog Output 2 decreasing time when a load is switched on

It is the time necessary to the analog Output to pass from AO2_13 to AO2_5 when a load is switched on. Range: $0 \div 255$

UM: sec

AO2_17 Regulation band

It is the band with the proportional action. It is accross the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the AO2_13 when the pressure/temperature is equal or higher than set + AO2_17. Range: $0.10\div10.00$ bar; $0.0\div25.0^{\circ}$ C; $1\div80$ PSI; $1\div50^{\circ}$ F; $10\div100$ KPA *UM*: according to CF26

AO2_18 Integral time

It sets the pound of the proportional action. The higher is AO2_18 , the lower is the integral action support.

Range: 0+999

0: integral action excluded

UM: s

AO2_19 Band offset

it is used to move the regulation band across to the set point. *Range:* -12.0÷12.0°C -12.00 ÷ 12.00 BAR, -120÷120°F, -120÷120PSI; 1200÷1200KPA *UM:* according to CF26

AO2_20 (Maximum) value of A.O.2 during adiabatic spray

Range: AO2_4 ÷ AO2_13

UM: %

AO2_21 Maximum value of A.o.2 during silent mode

Range: AO2_5/AO2_6 ÷ AO2_13

AO2_22 Minimum inverter capacity with poor lubrication

If the frequency compressor works for the AO2_23 time with a frequency (in percentage) equal or lower than AO2_22, it is forced to work at AO2_13 for the AO2_24 time in order to force the right lubrication. *Range*: 0:99%

0: function excluded

AO2_23 Maximum inverter functioning time at a lower frequency than AO2_22, before working at AO2_13

Range: 1÷255 UM: min

AO2_24 Time of inverter functioning at AO2_13 to restore the right lubrication Range: 1÷255

UM: min

- AO2_25 Maximum time, analog output 2 is off when AOC2 = 6 or 7 or 8 or 9 or 15 or 16 or 17 or 18 Range: 0.0÷24.0h; with 0 the function is disabled UM: 10min
- AO2_26 Time of analog output 2 at maximum AO2_13 when AO2_25 timer is over Range: 1÷255 UM: min

6.1.23 Analog Output 3 (AO3_1- AO3_26)

AO3_1 Reference probe for analogue Output 3, it is used only when the analog Output is configured as FREE in the io.conf file

AO1 10DIN:

Range: 0+9 0: Pb1 = (term. 2-7 (if the probe is configured as NTC PTC)) 1: Pb2 = (term. 3-7 (if the probe is configured as NTC PTC)) 2: Pb3 = (term. 4-7 (if the probe is configured as NTC PTC)) 3: Pb4 = (term. 5-7 (if the probe is configured as NTC PTC)) 4: Pb5 = (term. 6-7 (if the probe is configured as NTC PTC)) 5: Pb6 = (term. 10-7 (if the probe is configured as NTC PTC)) 6: Pb7 = (term. 11-7 (if the probe is configured as NTC PTC)) 7: Pb8 = (term. 12-7 (if the probe is configured as NTC PTC)) 8: Pb9 = (term, 13-7 (if the probe is configured as NTC PTC)) 9: Pb10 = (term. 14-7 (if the probe is configured as NTC PTC))

AO3_2 Adjustment of read out for the analog Output 3 It is used only when the analog Output is configured as FREE in the io.conf file

Range: -1.00+100.00 bar; -15+1450PSI; -70+150°C; -94+302°F; -100+10000 KPA UM: according to CF26

AO3 3 Adjustment of read out for the analog Output 3 at 20mA/10V

It is used only when the analog Output is configured as FREE in the io.conf file Range: -1.00+100.00 bar; -15+1450PSI; -70+150°C; 94+302°F; -100+10000 KPA UM: according to CF26

- AO3_4 Minimum value for analogue Output 3 Range: 0 ÷ AO3_13
- AO3 5 Analog Output 3 value after compressor start It is the value of the analogue Output after a compressor has started, when the pressure/temperature is above the regulation band. - Used during inverter regulation Range: AO3_4 ÷ AO3_13

AO3_6 Analog Output 3 value after a compressor is switched off It is the value of the analogue Output when a compressor has been switched off and the the pressure/temperature is below the regulation band. - Used during inverter regulation Range: AO3 4 ÷ AO3 13

AO3_7 Exclusion band start value for analog Output 3 it excludes a range of frequencies that could create problems to the compressor. - Used during inverter regulation Range: AO3_4 ÷ AO3_8

AO3 8 Exclusion band end value for analog Output 3

Used during inverter regulation Range: AO3_7 ÷ 99 %

AO3 9 Safety value for analog Output 2 it is used in case of probe's fault. Range: 0 ÷ AO3_13

AO3_10 Delay between the entrance in the regulation band and the regulation activation

it is the delay between the entrance in the regulation band of pressure/temperature and the regulation start. It is used to avoid false inverter starts due to pressure variations. - Used during inverter regulation. Range: 0 ÷ 255

UM: sec

AO3 11 Analog Output 2 rise time

It is the time necessary to the analog Output to pass from the AO3 4 ÷ AO3 13 when a compressor has started and the pressure/temperature is above the regulation band. - Used during inverter regulation. Range: 0 ÷ 255

UM: sec

AO3_12 Analog Output 2 permanency at AO3_13 before load activation

the analog Output remains at AO3_13 value for this time before a load is activated. – Used during inverter regulation

Range: 0 ÷ 255 UM: sec

AO3_13 Max value for analogue Output 3

Range: AO3_4 -100%

AO3_14 Analog Output 2 decreasing time

It is the time taken from the analog Output to pass from the AO3_13 to the AO3_4 value. It is used during the switching off phase, when the pressure is lower than the set point. Range: $0 \div 255$ *UM*: sec

AO3_15 Analog Output 2 permanency at AO3_4 before a load is switched off

When the pressure (temperature) is below the set point, the analog Output remains at AO3_4 value for the AO3_15 before a load is switched off. *Range*: 0 ÷ 255 *UM*: sec

AO3_16 Analog Output 3 decreasing time when a load is switched on

It is the time necessary to the analog Output to pass from AO3_13 to AO3_5 when a load is switched on. *Range*: 0 ÷ 255

UM: sec

AO3_17 Regulation band

It is the band with the proportional action. It is accross the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the AO3_13 when the pressure/temperature is equal or higher than set + AO3_17. *Range*: 0.10÷10.00bar; 0.0÷25.0°C; 1÷80 PSI; 1÷50°F;10÷1000 KPA UM: according to CF26

AO3_18 Integral time

It sets the pound of the proportional action. The higher is AO3_18 , the lower is the integral action support. *Range*: 0:999 0: integral action excluded *UM*: s

AO3_19 Band offset

it is used to move the regulation band across to the set point. *Range:* -12.0÷12.0°C -12.00 ÷ 12.00 BAR, -120÷120°F, -120÷120PSI; 1200÷1200KPA *UM:* according to CF26

AO3_20 (Maximum) value of A.O.3 during adiabatic spray

Range: AO3_4 ÷ AO3_13 UM: %

AO3_21 Maximum value of A.o.3 during silent mode

Range: AO3_5/AO3_6 ÷ AO3_13

AO3_22 Minimum inverter capacity with poor lubrication

If the frequency compressor works for the AO3_23 time with a frequency (in percentage) equal or lower than AO3_22, it is forced to work at AO3_13 for the AO3_24 time in order to make the right lubrication. *Range*: 0:99%

0: function excluded

AO3_23 Maximum inverter functioning time at a lower frequency than AO3_22, before working at AO3_13

Range: 1÷255 *UM*: min

AO3_24 Time of inverter functioning at AO3_13 to restore the right lubrication Range: 1÷255

UM: min

- AO3_25 Maximum time, analog output 3 is off when AOC3 = 6 or 7 or 8 or 9 or 15 or 16 or 17 or 18 *Range*: 0.0÷24.0h; with 0 the function is disabled *UM*: 10min
- AO3_26 Time of analog output 3 at maximum AO3_13 when AO3_25 timer is over Range: 1÷255 UM: min

6.1.24 Analog Output 4 (AO4 1- AO4 26)

AO4_1 Reference probe for analogue Output 4, it is used only when the analog Output is configured as FREE in the io.conf file

AO1_10DIN:

Range: 0÷9

- **0: Pb1** = (term. 2-7 (if the probe is configured as NTC PTC))
- 1: Pb2 = (term. 3-7 (if the probe is configured as NTC PTC))
- 2: Pb3 = (term. 4-7 (if the probe is configured as NTC PTC))
- 3: Pb4 = (term. 5-7 (if the probe is configured as NTC PTC))
- **4: Pb5** = (term. 6-7 (if the probe is configured as NTC PTC))
- **5: Pb6** = (term. 10-7 (if the probe is configured as NTC PTC))
- 6: Pb7 = (term. 11-7 (if the probe is configured as NTC PTC))
- 7: Pb8 = (term. 12-7 (if the probe is configured as NTC PTC))
- 8: Pb9 = (term. 13-7 (if the probe is configured as NTC PTC))
- 9: Pb10 = (term. 14-7 (if the probe is configured as NTC PTC))

AO4_2 Adjustment of read out for the analog Output 4

It is used only when the analog Output is configured as FREE in the io.conf file *Range:* -1.00+100.00 bar; -15+1450PSI; -70+150°C; -94+302°F; -100+10000 KPA *UM:* according to CF26

AO4_3 Adjustment of read out for the analog Output 4 at 20mA/10V

It is used only when the analog Output is configured as FREE in the io.conf file Range: -1.00÷100.00 bar; -15÷1450PSI; -70÷150°C; 94÷302°F; -100÷10000 KPA UM: according to CF26

AO4_4 Minimum value for analogue Output 4 Range: 0 ÷ AO4_13

AO4_5 Analog Output 4 value after compressor start It is the value of the analogue Output after a compressor has started, when the pressure/temperature is above the regulation band. – Used during inverter regulation Range: AO4_4 ÷ AO4_13

AO4_6 Analog Output 4 value after a compressor is switched off

It is the value of the analogue Output when a compressor has been switched off and the the pressure/temperature is below the regulation band. – Used during inverter regulation Range: $AO4_4 \div AO4_{-13}$

AO4_7 Exclusion band start value for analog Output 2

it excludes a range of frequencies that could create problems to the compressor. - Used during inverter regulation

Range: AO4_4 ÷ AO4_8

AO4_8 Exclusion band end value for analog Output 2

Used during inverter regulation Range: AO4_7 ÷ 99 %

AO4_9 Safety value for analog Output 2 it is used in case of probe's fault. Range: 0 ÷ AO4_13

AO4_10 Delay between the entrance in the regulation band and the regulation activation

it is the delay between the entrance in the regulation band of pressure/temperature and the regulation start. It is used to avoid false inverter starts due to pressure variations. – Used during inverter regulation. Range: 0 ÷ 255

UM: sec

AO4_11 Analog Output 2 rise time

It is the time necessary to the analog Output to pass from the AO4_4 ÷ AO4_13, when a compressor has started and the pressure/temperature is above the regulation band. – *Used during inverter regulation.* Range: 0 ÷ 255 *UM*: sec

AO4_12 Analog Output 2 permanency at AO4_13 before load activation

the analog Output remains at AO4_13 value for this time before a load is activated. – Used during inverter regulation Range: 0 ÷ 255

UM: sec

AO4_13 Max value for analogue Output 4

Range: AO4_4-100%

AO4_14 Analog Output 2 decreasing time (

It is the time taken from the analog Output to pass from the AO4_13 to the AO4_4 value. It is used during the switching off phase, when the pressure is lower than the set point. Range: $0 \div 255$ *UM*: sec

AO4_15 Analog Output 2 permanency at AO4_4 before a load is switched off

When the pressure (temperature) is below the set point, the analog Output remains at AO4_4 value for the AO4_15 before a load is switched off. Range: $0 \div 255$

UM: sec

AO4_16 Analog Output 4 decreasing time when a load is switched on

It is the time necessary to the analog Output to pass from AO4_13 to AO4_5 when a load is switched on. Range: 0 ÷ 255

UM: sec

AO4_17 Regulation band

It is the band with the proportional action. It is accross the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the AO4_13 when the pressure/temperature is equal or higher than set + AO4_17. *Range*: 0.10+10.00bar; 0.0+25.0°C; 1+80 PSI; 1+50°F;10+1000 KPA UM: according to CF26

AO4_18 Integral time

It sets the pound of the proportional action. The higher is AO4_18 , the lower is the integral action support. Range: 0:999

0: integral action excluded

UM: s

AO4_19 Band offset

It is used to move the regulation band across to the set point. *Range:* -12.0÷12.0°C -12.00 ÷ 12.00 BAR, -120÷120°F, -120÷120PSI; 1200÷1200KPA *UM:* according to CF26

AO4_20 (Maximum) value of A.O.4 during adiabatic spray Range: AO4_4 ÷ AO4_13 *UM:* %

- AO4_21 Maximum value of A.o.4 during silent mode Range: AO4_5/AO4_6 ÷ AO4_13
- AO4_22 Minimum inverter capacity with poor lubrication If the frequency compressor works for the AO4_23 time with a frequency (in percentage) equal or lower than AO4_22, it is forced to work at AO4_13 for the AO4_24 time in order to force the right lubrication. *Range*: 0÷99% 0: function excluded
- AO4_23 Maximum inverter functioning time at a lower frequency than AO4_22, before working at AO4_13

Range: 1÷255 *UM*: min

AO4_24 Time of inverter functioning at AO4_13 to restore the right lubrication

Range: 1÷255 *UM*: min

- AO4_25 Maximum time, analog output 4 is off when AOC4 = 6 or 7 or 8 or 9 or 15 or 16 or 17 or 18 *Range*: 0.0÷24.0h; with 0 the function is disabled *UM*: 10min
- AO4_26 Time of analog output 4 at maximum AO4_13 when AO4_25 timer is over Range: 1÷255 UM min

6.1.25 Analog Output 5 (AO5_1- AO5_26)

A05_1 Reference probe for analogue Output 5, it is used only when the analog Output is configured as FREE in the io.conf file

AO1_10DIN:

Range: 0÷9

- 0: Pb1 = (term. 2-7 (if the probe is configured as NTC PTC))
- 1: Pb2 = (term. 3-7 (if the probe is configured as NTC PTC))
- 2: Pb3 = (term. 4-7 (if the probe is configured as NTC PTC))
- 3: Pb4 = (term. 5-7 (if the probe is configured as NTC PTC))
- 4: Pb5 = (term. 6-7 (if the probe is configured as NTC PTC))
- 5: Pb6 = (term. 10-7 (if the probe is configured as NTC PTC))
- 6: Pb7 = (term. 11-7 (if the probe is configured as NTC PTC))
- 7: Pb8 = (term. 12-7 (if the probe is configured as NTC PTC))
- 8: Pb9 = (term. 13-7 (if the probe is configured as NTC PTC))

9: Pb10 = (term. 14-7 (if the probe is configured as NTC PTC))

AO5_2 Adjustment of read out for the analog Output 5

It is used only when the analog Output is configured as FREE in the io.conf file Range: -1.00+100.00 bar; -15+1450PSI; -70+150°C; -94+302°F; -100+10000 KPA UM: according to CF26 AO5_3 Adjustment of read out for the analog Output 5 at 20mA/10V

It is used only when the analog Output is configured as FREE in the io.conf file Range: -1.00÷100.00 bar; -15÷1450PSI; -70÷150°C; 94÷302°F; -100÷10000 KPA UM: according to CF26

AO5_4 Minimum value for analogue Output 5 Range: 0 ÷ AO5_13

AO5_5 Analog Output 5 value after compressor start It is the value of the analogue Output after a compressor has started, when the pressure/temperature is above the regulation band. – Used during inverter regulation Range: AO5 4 ÷ AO5 13

A05_6 Analog Output 5 value after a compressor is switched off It is the value of the analogue Output when a compressor has been switched off and the the pressure/temperature is below the regulation band. – Used during inverter regulation Range: AO5_4 ÷ AO5_13

AO5_7 Exclusion band start value for analog Output 5

it excludes a range of frequencies that could create problems to the compressor. – Used during inverter regulation *Range*: AO5 4 ÷ AO5 8

AO5_8 Exclusion band end value for analog Output 5

Used during inverter regulation Range: AO5_7 ÷ 99 %

AO5_9 Safety value for analog Output 5

it is used in case of probe's fault. *Range:* 0 ÷ AO5_13

AO5_10 Delay between the entrance in the regulation band and the regulation activation

it is the delay between the entrance in the regulation band of pressure/temperature and the regulation start. It is used to avoid false inverter starts due to pressure variations. – Used during inverter regulation. Range: $0 \div 255$

UM: sec

AO5_11 Analog Output 5 rise time

It is the time necessary to the analog Output to pass from the AO5_4 ÷ AO5_13, when a compressor has started and the pressure/temperature is above the regulation band. – Used during inverter regulation. Range: 0 ÷ 255

AO5_12 Analog Output 5 permanency at AO5_13 before load activation

the analog Output remains at AO5_13 value for this time before a load is activated. – Used during inverter regulation Range: 0 ÷ 255

UM: sec

AO5_13 Max value for analogue Output 5

Range: AO5_4-100%

AO5_14 Analog Output 5 decreasing time

It is the time taken from the analog Output to pass from the AO5_13 to the AO5_4 value. It is used during the switching off phase, when the pressure is lower than the set point. *Range*: 0 ÷ 255 *UM*: sec

AO5_15 Analog Output 5 permanency at AO5_5 before a load is switched off

When the pressure (temperature) is below the set point, the analog Output remains at AO5_5 value for the AO5_15 before a load is switched off. Range: $0 \div 255$ UM: sec

AO5_16 Analog Output 5 decreasing time when a load is switched on

It is the time necessary to the analog Output to pass from AO5_13 to AO5_5 when a load is switched on. *Range*: 0 ÷ 255 *UM*: sec

AO5_17 Regulation band

It is the band with the proportional action. It is accross the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the AO5_13 when the pressure/temperature is equal or higher than set + AO5_17. *Range*: 0.10÷10.00bar; 0.0÷25.0°C; 1÷80 PSI; 1÷50°F;10÷1000 KPA UM: according to CF26

AO5_18 Integral time

It sets the pound of the proportional action. The higher is AO5_18 , the lower is the integral action support.

Range: 0+999

0: integral action excluded

UM:

AO5_19 Band offset

It is used to move the regulation band across to the set point. *Range:* -12.0÷12.0°C -12.00 ÷ 12.00 BAR, -120÷120°F, -120÷120PSI; 1200÷1200KPA *UM:* according to CF26

AO5_20 (Maximum) value of A.O.5 during adiabatic spray

Range: AO5_4 ÷ AO5_13 UM: %

AO5_21 Maximum value of A.o.5 during silent mode (AO5_5/AO5_6 ÷ AO5_13) Range: AO5_5/AO5_6 ÷ AO5_13

AO5_22 Minimum inverter capacity with poor lubrication

If the frequency compressor works for the AO5_23 time with a frequency (in percentage) equal or lower than AO5_22, it is forced to work at AO5_13 for the AO5_24 time in order to force the right lubrication. *Range*: 0-99%

0: function excluded

AO5_23 Maximum inverter functioning time at a lower frequency than AO5_22, before working at AO5_13

Range: 1÷255 *UM*: min

AO5_24 Time of inverter functioning at AO5_13 to restore the right lubrication Range: 1÷255

UM: min

- AO5_25 Maximum time, analog output 5 is off when AOC5 = 6 or 7 or 8 or 9 or 15 or 16 or 17 or 18 Range: 0.0-24.0h; with 0 the function is disabled UM: 10min
- AO5_26 Time of analog output 5 at maximum AO5_13 when AO5_25 timer is over
 - Range: 1+255

UM: min

6.1.26 Analog Output 6 (AO6 1- AO6 26)

AO6_1 Reference probe for analogue Output 6, it is used only when the analog Output is configured as FREE in the io.conf file

AO1_10DIN:

Range: 0÷9

- 0: Pb1 = (term. 2-7 (if the probe is configured as NTC PTC))
- 1: Pb2 = (term. 3-7 (if the probe is configured as NTC PTC))
- 2: Pb3 = (term. 4-7 (if the probe is configured as NTC PTC))
- **3: Pb4** = (term. 5-7 (if the probe is configured as NTC PTC))
- 4: Pb5 = (term. 6-7 (if the probe is configured as NTC PTC))
- 5: Pb6 = (term. 10-7 (if the probe is configured as NTC PTC))
- 6: Pb7 = (term. 11-7 (if the probe is configured as NTC PTC))
- 7: Pb8 = (term. 12-7 (if the probe is configured as NTC PTC))
- 8: Pb9 = (term. 13-7 (if the probe is configured as NTC PTC))
- 9: Pb10 = (term. 14-7 (if the probe is configured as NTC PTC))

AO6_2 Adjustment of read out for the analog Output 6

It is used only when the analog Output is configured as FREE in the io.conf file *Range:* -1.00+100.00 bar; -15+1450PSI; -70+150°C; -94+302°F; -100+10000 KPA *UM:* according to CF26

AO6_3 Adjustment of read out for the analog Output 6 at 20mA/10V

It is used only when the analog Output is configured as FREE in the io.conf file Range: -1.00+100.00 bar; -15+1450PSI; -70+150°C; 94+302°F; -100+10000 KPA UM: according to CF26

AO6_4 Minimum value for analogue Output 6 Range: 0 ÷ AO6_13

AO6_5 Analog Output 6 value after compressor start

It is the value of the analogue Output after a compressor has started, when the pressure/temperature is above the regulation band. – Used during inverter regulation Range: $AO6_4 \div AO6_{-13}$

AO6_6 Analog Output 6 value after a compressor is switched off It is the value of the analogue Output when a compressor has been switched off and the the pressure/temperature is below the regulation band. – Used during inverter regulation Range: AO6_4 ÷ AO6_13

AO6_7 Exclusion band start value for analog Output 6

it excludes a range of frequencies that could create problems to the compressor. – Used during inverter regulation *Range*: AO6_4 ÷ AO6_8

AO6_8 Exclusion band end value for analog Output 6

Used during inverter regulation *Range:* AO6_7 ÷ 99 %

AO6_9 Safety value for analog Output 6 it is used in case of probe's fault. Range: 0 ÷ AO6_13

AO6_10 Delay between the entrance in the regulation band and the regulation activation

it is the delay between the entrance in the regulation band of pressure/temperature and the regulation start. It is used to avoid false inverter starts due to pressure variations. – Used during inverter regulation. Range: $0 \div 255$ UM: sec

AO6_11 Analog Output 6 rise time

It is the time necessary to the analog Output to pass from the AO6_4 \div AO6_13, when a compressor has started and the pressure/temperature is above the regulation band. – Used during inverter regulation.

Range: 0 ÷ 255 UM: sec

AO6_12 Analog Output 6 permanency at AO6_13 before load activation

the analog Output remains at AO6_13 value for this time before a load is activated. – Used during inverter regulation Range: 0 ÷ 255 UM: sec

AO6_13 Max value for analogue Output 6

Range: AO6_4 -100%

AO6_14 Analog Output 6 decreasing time

It is the time taken from the analog Output to pass from the AO6_13 to the AO6_4 value. It is used during the switching off phase, when the pressure is lower than the set point. Range: $0 \div 255$ *UM*: sec

AO6_15 Analog Output 6 permanency at AO6_5 before a load is switched off

When the pressure (temperature) is below the set point, the analog Output remains at AO6_5 value for the AO6_15 before a load is switched off. *Range*: 0 ÷ 255 *UM*: sec

AO6_16 Analog Output 6 decreasing time when a load is switched on

It is the time necessary to the analog Output to pass from AO6_13 to AO6_5 when a load is switched on. Range: 0 ÷ 255 UMM sec

AO6_17 Regulation band

It is the band with the proportional action. It is accross the set point. The proportional action starts when the temperature/pressure value is higher than the set point and it reaches the AO6_13 when the pressure/temperature is equal or higher than set + AO6_17. Range: $0.10\div10.00$ bar; $0.0\div25.0^{\circ}$ C; $1\div80$ PSI; $1\div50^{\circ}$ F; $10\div100$ KPA UM: according to CF26

AO6_18 Integral time

It sets the pound of the proportional action. The higher is AO6_18 , the lower is the integral action support. *Range*: 0÷999 0: integral action excluded *UM*: s

AO6_19 Band offset

It is used to move the regulation band across to the set point. *Range:* -12.0÷12.0°C -12.00 ÷ 12.00 BAR, -120÷120°F, -120÷120PSI; 1200÷1200KPA *UM:* according to CF26

AO6_20 (Maximum) value of A.O.6 during adiabatic spray

Range: AO6_4 ÷ AO6_13

UM: %

AO6_21 Maximum value of A.o.6 during silent mode Range: AO6 5/AO6 6 ÷100

AO6_22 Minimum inverter capacity with poor lubrication

If the frequency compressor works for the AO6_23 time with a frequency (in percentage) equal or

lower than AO5_22, it is forced to work at AO6_13 for the AO6_24 time in order to force the right lubrication. *Range*: 0-99% 0: function excluded

AO6_23 Maximum inverter functioning time at a lower frequency than AO6_22, before working at AO6_13

Range: 1÷255 UM: min

- AO6_24 Time of inverter functioning at AO6_13 to restore the right lubrication Range: 1÷255 UM: min
- AO6_25 Maximum time, analog output 6 is off when AOC6 = 6 or 7 or 8 or 9 or 15 or 16 or 17 or 18 Range: 0.0÷24.0h; with 0 the function is disabled UM: 10min
- AO6_26 Time of analog output 6 at maximum AO6_13 when AO6_25 timer is over Range: 1÷255 UM: min

6.1.27 Auxiliary outputs (AR1-AR26)

- AR1 Set point for auxiliary relay 1 (-40÷110°C/-40÷230°F) it is used for all the relays configured as ausiliary 1
- AR2 Differential for aux relay 1 (0,1÷25,0°C/1÷50°F) Intervention differential for relay AUX1.
 Cooling (AR3 = CL): Cut IN is AR1+ AR2. Cut OUT is when the temperature reaches the set point AR1.
 Heating (AR3=Ht): Cut IN is AR1- AR2. Cut OUT is when the temperature reaches the set point. AR1
- AR3 Kind of action for aux. 1 CL = cooling Ht = heating
- AR4 Set point for auxiliary relay 2 (-40÷110°C/-40÷230°F) it is used for all the relays configured as Ausiliary 2.
- AR5 Differential for aux relay 2 (0,1÷25,0°C/1÷50°F) Intervention differential for relay AUX2. Cooling (AR6 = CL): Cut IN is AR5+ AR5. Cut OUT is when the temperature reaches the set point AR5. Heating (AR36 = Ht): Cut IN is AR5- AR5. Cut OUT is when the temperature reaches the set point. AR5
- AR6 Kind of action for aux. 2 CL = cooling Ht = heating
- AR7 Set point for auxiliary relay 3 (-40÷110°C/-40÷230°F) it is used for all the relays configured as Ausiliary 3.
- AR8 Differential for aux relay 3 (0,1÷25,0°C/1÷50°F) Intervention differential for relay AUX3.
 Cooling (AR3 = CL): Cut IN is AR7+ AR8. Cut OUT is when the temperature reaches the set point AR7.
 Heating (AR8=Ht): Cut IN is AR7- AR8. Cut OUT is when the temperature reaches the set point. AR7-
- AR9 Kind of action for aux. 3 CL = cooling Ht = heating

- AR10 Set point for auxiliary relay 4 (-40÷110°C/-40÷230°F) it is used for all the relays configured as Ausiliary 4.
- AR11 Differential for aux relay 4 (0,1÷25,0°C/1÷50°F) Intervention differential for relay AUX5. Cooling (AR12 = CL): Cut IN is AR10+ AR11. Cut OUT is when the temperature reaches the set point AR10.
 Heating (AR12=Ht): Cut IN is AR10- AR11. Cut OUT is when the temperature reaches the set point.

Heating (AR12=Ht): Cut IN is AR10- AR11. Cut OUT is when the temperature reaches the set point. AR10

- AR12 Kind of action for aux. 4 CL = cooling Ht = heating
- AR13 Set point for auxiliary relay 5 (-40÷110°C/-40÷230°F) it is used for all the relays configured as auxiliary 5.
- AR14 Differential for aux relay 5 (0,1÷25,0°C/1÷50°F) Intervention differential for relay AUX5. Cooling (AR15 = CL): Cut IN is AR13+ AR14. Cut OUT is when the temperature reaches the set point AR13. Heating (AR15=Ht): Cut IN is AR13- AR14. Cut OUT is when the temperature reaches the set point. AR13
- AR15 Kind of action for aux. 5 CL = cooling Ht = heating
- AR16 Set point for auxiliary relay 6 (-40÷110°C/-40÷230°F) it is used for all the relays configured as auxiliary 6.

 AR17 Differential for aux relay 6 (0,1÷25,0°C/1÷50°F) Intervention differential for relay AUX6. Cooling (AR18 = CL): Cut IN is AR16+ AR17. Cut OUT is when the temperature reaches the set point AR16. Heating (AR18=Ht): Cut IN is AR16- AR17. Cut OUT is when the temperature reaches the set point. AR16

- AR18 Kind of action for aux. 6 CL = cooling Ht = heating
- AR19 Auxiliary output 1 delay, when activated by digital input Range: 0÷5000 UM: sec
- AR20 Auxiliary output 2 delay, when activated by digital input Range: 0÷5000 UM: sec
- AR21 Auxiliary output 3 delay, when activated by digital input Range: 0÷5000 UM: sec
- AR22 Auxiliary output 4 delay, when activated by digital input Range: 0÷5000 UM: sec
- AR23 Auxiliary output 5 delay, when activated by digital input Range: 0÷5000 UM: sec
- AR24 Auxiliary output 6 delay, when activated by digital input Range: 0÷5000 UM: sec

- AR25 Auxiliary output 7 delay, when activated by digital input Range: 0÷5000 UM: sec
- AR26 Auxiliary output 8 delay, when activated by digital input Range: 0÷5000 UM: sec

6.1.28 Superheat Circuit 1(ASH1- ASH7)

- ASH1 Differential for superheat pre-alarm 1 (0.1 to 15.0°C/ 1 to 30°F)
- ASH2 Lower limit of suction superheat alarm 1 (0.1 to 15.0°C/ 1 to 30°F)
- ASH3 Delay for signalling suction superheat alarm 1 (0 to 5000 sec, resolution 10 sec;)
- ASH4 Delay for signalling suction superheat alarm 1 (0÷255sec)
- ASH5 Switching off compressors for alarm ASH2 (No;Yes)
- ASH6 Differential to restart suction superheat alarm control 1 (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH7 Delay to restart control after superheat > ASH2+ASH6 (0÷5000sec, Res. 10 sec)

6.1.29 Hot gas injection valve 1 for SH control (ASH8-ASH9)

- ASH8 Superheat value 1 at which to enable valve 1 for injecting hot gas (hot action) (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH9 Differential for ASH8 (0.1÷15.0°C; 1 to 30°F; to CF26)

6.1.30 Superheat Circuit 2(ASH10- ASH16)

- ASH10 Differential for superheat pre-alarm 2 (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH11 Bottom limit of suction superheat alarm 2 (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH12 Delay for signalling suction pre-superheat alarm 2 (0÷5000sec; Resolution: 10 sec)
- ASH13 Delay for signalling suction superheat alarm 2 (0÷255sec)
- ASH14 Switching off compressors for alarm ASH11 (No; Yes)
- ASH15 Differential for restarting suction superheat alarm control 2 (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH16 Delay for restarting control after superheat > ASH11+ASH15 (0÷5000sec; *Resolution:* 10 sec)

6.1.31 Hot gas injection valve 2 for SH control (ASH17-ASH18)

- ASH17 Superheat value 2 at which to enable valve 2 for injecting hot gas (hot action) (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH18 Differential for ASH17 (0.1÷15.0°C; 1÷30°F; according to CF26)

6.1.32 Superheat Alarm relay (ASH19)

ASH19 Alarm relay selection for superheat 1 and 2 alarms

(nu = no alarm relay activation; ALr = general alarm relay activation; ALr1 = Alarm 1 relay activation; ALr2 = Alarm 2 relay activation)

6.1.33 <u>Hot gas injection valves controlled by temperatura control</u> (ASH20-ASH25)

ASH20 Hot gas valve circuit 1 activated also by temperature control (no, yes)

- ASH21 Suction 1 temperature value at which the hot gas valve is enabled (hot action) (-50÷110°C/ -58 to 230°F; according to CF26)
- ASH22 Differential for ASH21 (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH23 Hot gas valve circuit 2 activated also by temperature control (no, yes)
- ASH24 Suction 2 temperature value, at which the hot gas valve is enabled (hot action) (-50÷110°C/ -58 to 230°F; according to CF26)
- ASH25 Differential for ASH24 (0.1÷15.0°C; 1 to 30°F; according to CF26)

6.1.34 Liquid injection valves (ASH26-ASH42)

ASH26 Liquid injection valve circuit 1 activated also by SH control (no, yes)

- ASH27 High Superheat value of circuit 1 to enable liquid injection (cooling action) (1.0÷100.0°C; 1 to 180°F; according to CF26)
- ASH28 Differential for ASH27 (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH29 Liquid injection valve circuit 2 activated also by SH control (no, yes)
- ASH30 High Superheat value of circuit 2 to enable liquid injection (cooling action) (1.0÷100.0°C; 1 to 180°F; according to CF26)
- ASH31 Differential for ASH30 (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH32 Liquid injection valve, circuit 1, activated also by temperature control (no, yes)
- ASH33 Delay after compressor start, before initiatingthe suction temperature control: This delay is used both for circuit 1 and circuit 2. (0÷15min)
- ASH34 Suction 1 temperature value at which the liquid injection valve is enabled (cooling action) (-50÷110°C/ -58 to 230°F; according to CF26)
- ASH35 Differential for ASH34 (0.1÷15.0°C; 1 to 30°F; according to CF26)
- ASH36 Liquid injection valve, circuit 2, activated also by temperature control (no, yes)
- ASH37 Suction 2 temperature value at which the liquid injection valve is enabled (cooling action) (-50÷110°C/ -58 to 230°F; according to CF26)
- ASH38 Differential for ASH37 (0.1÷15.0°C; 1 to 30°F; according to CF26)

ASH39 On time for liquid injection valve circuit 1

Range: 3÷500 UM: sec Resolution: 1 sec

ASH40 Off time for liquid injection valve Circuit 1

Range: 0÷500 UM: sec Resolution: 1 sec

ASH41 On time for liquid injection valve Circuit 2

Range: 3÷500 UM: sec Resolution: 1 sec

ASH42 Off time for liquid injection valve Cicuit 2 Range: 0÷500

UM: sec Resolution: 1 sec

6.1.35 Discharge temperature management and alarms (DSC1-DSC14)

- DSC1 Circuit 1, Liquid injection valve activated also by discharge temperature Range: 0÷1 0: no 1: yes
- DSC2 Circuit 1, discharge temperature threshold to activate the liquid injection valve Range: 0.0÷150.0°C; 32 to 302°F UM: according to CF26
- DSC3 Circuit 1, Differential for DSC2 Range: 0.1÷15.0°C; 1 to 30°F UM: according to CF26
- DSC4 Circuit 1, High discharge temperature alarm, circuit 1
- Range: 0.0÷150.0°C; 32 to 302°F
- UM: according to CF26
- DSC5 Circuit 1, High discharge temperature alarm delay Range: 0÷60 UM: min
- DSC6 Circuit 1, Delay before stopping compressors, with High discharge temperature alarm: Range: 0÷255 UM: min
- DSC7 Circuit 1, Interval between 2 compressors turning off in case of high discharge temperature alarm: Range: 0÷255 UM: sec

DSC8 Circuit 2, Liquid injection valve activated also discharge temperature Range: 0÷1 0: no

- 1: yes
- DSC9 Circuit 2, discharge temperature threshold to activate the liquid injection valve Range: 0.0÷150.0°C; 32 to 302°F UM: according to CF26
- DSC10 Circuit 2, Differential for DSC9 e DSC11 Range: 0.1÷15.0°C; 1 to 30°F UM: according to CF26
- DSC11 Circuit 2, High discharge temperature alarm

Range: 0.0÷150.0°C; 32 to 302°F UM: according to CF26

- DSC12 Circuit 2, High discharge temperature alarm delay Range: 0÷60 UM: min
- DSC13 Circuit 2, Delay before stopping compressors, with high discharge temperature alarm: Range: 0÷255 UM: min
- DSC14 Circuit 2, Interval between 2 compressors turning off in case of high discharge temperature alarm: Range: 0÷255

UM: sec

6.1.36 Gas Leak Detector(GLD1-GLD24)

When configured rack leak detection monitors PPM reading from refrigerant leak sensor. In the event leak is detected at value GLD3 iPro calls alarm : GLeak1(2) PreAlm. GLeak1(2) PreAlm is for signalling only and clears automatically when PPM reaches levels below GLD3. When leak is detected at GLD4 iPro calls GLeak1(2) Alarm. In the event GLeak1(2) Alarm initiate rack shut down.

GLD1 Pre-alarm threshold for Gas Leak Detector 1

Range: 0÷GLD2 UM: PPM

GLD2 Alarm threshold for Gas Leak Detector 1

Range: GLD1÷50000 UM: PPM

GLD3 Differential for Gas Leak pre-alarm recover Detector 1

Range: 1÷50000 UM: PPM

GLD4 Relay activation in case of Gas Leak pre-alarm Detector 1

Range: 0÷8

0: nu 1: Aux. output 1 2: Aux. output 2 3: Aux. output 3 4: Aux. output 4 5: Aux. output 5 6: Aux. output 6 7: Aux. output 7 8: Aux. output 8

GLD5 Relay activation in case of Gas Leak alarm Detector 1

Range: 0÷8

0: nu 1: Aux. output 1 2: Aux. output 2 3: Aux. output 3 4: Aux. output 4 5: Aux. output 5 6: Aux. output 6 7: Aux. output 7 8: Aux. output 7

GLD6 Pre-alarm threshold for Gas Leak Detector 2

Range: 0÷GLD7 UM: PPM

GLD7 Alarm threshold for Gas Leak Detector 2

Range: GLD6÷50000 UM: PPM

GLD8 Differential for Gas Leak pre-alarm recover Detector 2

Range: 1÷50000 UM: PPM

GLD9 Relay activation in case of Gas Leak pre-alarm Detector 2

Range: 0÷8

0: nu 1: Aux. output 1 2: Aux. output 2 3: Aux. output 3 4: Aux. output 3 5: Aux. output 4 5: Aux. output 5 6: Aux. output 6 7: Aux. output 8

GLD10 Relay activation in case of Gas Leak alarm Detector 2 Range: 0+8

- nge. 0.0
 - 0: nu 1: Aux. output 1 2: Aux. output 2 3: Aux. output 3 4: Aux. output 3 5: Aux. output 5 6: Aux. output 6 7: Aux. output 8

GLD11 Pre-alarm threshold for Gas Leak Detector 3 (0+GLD12)

Range: 0÷GLD12 UM: PPM

GLD12 Alarm threshold for Gas Leak Detector 3 (GLD11÷50000 PPM)

Range: GLD11÷50000 UM: PPM

GLD13 Differential for Gas Leak pre-alarm recover Detector 3

Range: 1÷50000 *UM:* PPM

GLD14 Relay activation in case of Gas Leak pre-alarm Detector 3

Range: 0÷8

0: nu 1: Aux. output 1 2: Aux. output 2 3: Aux. output 2 3: Aux. output 3 4: Aux. output 4 5: Aux. output 5 6: Aux. output 6 7: Aux. output 7 8: Aux. output 7

GLD15 Relay activation in case of Gas Leak alarm Detector 3

Range: 0÷8 0: nu 1: Aux. output 1 2: Aux. output 2 3: Aux. output 3 4: Aux. output 4 5: Aux. output 5 6: Aux. output 6 7: Aux. output 7 8: Aux. output 8

GLD16 Pre-alarm threshold for Gas Leak Detector 4 (0+GLD17)

Range: 0÷ GLD17 UM: PPM

GLD17 Alarm threshold for Gas Leak Detector 4 (GLD16÷50000 PPM)

Range: GLD16÷50000 UM: PPM

GLD18 Differential for Gas Leak pre-alarm recover Detector 4 (1÷50000 PPM)

Range: 1÷50000 *UM:* PPM

GLD19 Relay activation in case of Gas Leak pre-alarm Detector 4 (nu, Aux. output 1, ..., Aux output 8) Range: 0+8

0: nu 1: Aux. output 1 2: Aux. output 2 3: Aux. output 2 4: Aux. output 4 5: Aux. output 4 5: Aux. output 5 6: Aux. output 6 7: Aux. output 7 8: Aux. output 7

GLD20 Relay activation in case of Gas Leak alarm Detector 4 (nu, Aux. output 1, ..., Aux output 8) Range: 0-8

0: nu 1: Aux. output 1 2: Aux. output 2 3: Aux. output 3 4: Aux. output 3 4: Aux. output 4 5: Aux. output 5 6: Aux. output 6 7: Aux. output 7 8: Aux. output 7

GLD21 Differential for Gas Leak alarm recover Detector 1

Range: 1÷50000 *UM:* PPM

GLD22 Differential for Gas Leak alarm recover Detector 2

Range: 1÷50000 *UM:* PPM

GLD23 Differential for Gas Leak alarm recover Detector 3

Range: 1÷50000 *UM:* PPM

GLD24 Differential for Gas Leak alarm recover Detector 4

Range: 1÷50000 UM: PPM

6.1.37 Other (OT1-OT7)

OT1 Alarm relay off by keyboard It is referred to the relay with terminals 85-85-86 no = alarm relay remains on for all the duration of the alarm yES = the alarm relay is switched off by pushing a key

- OT2 Alarm relay 1 off by keyboard It is referred to the relays configured as ALr1 no = alarm relay remains on for all the duration of the alarm yES = the alarm relay is switched off by pushing a key
- OT3 Alarm relay 2 off by keyboard It is referred to the relays configured as ALr2 no = alarm relay remains on for all the duration of the alarm yES = the alarm relay is switched off by pushing a key
- OT4 Serial address 1 ÷ 247
- OT5 Off function enabling no = it is not possible to switch the controller off by keyboard YES = it is possible to switch the controller off by keyboard
- OT7 EEPROM map identification, read only, for internal use. Range: 1 ÷ 255

Note: OT7 only can be changed from Wizmate; it is read only for Viso.

6.1.38 DIGITAL-INPUTS Configuration (DIC1-DIC43)

DIC 1 Configuration Digital Input 1 (0÷187c) DIC 2 Configuration Digital Input 2 (0+187c) DIC 3 Configuration Digital Input 3 (0÷187c) DIC 4 Configuration Digital Input 4 (0÷187c) DIC 5 Configuration Digital Input 5 (0÷187c) DIC 6 Configuration Digital Input 6 (0÷187c) DIC 7 Configuration Digital Input 7 (0÷187c) DIC 8 Configuration Digital Input 8 (0÷187c) DIC9 Configuration Digital Input 9 (0+187c) DIC 10 Configuration Digital Input 10 (0+187c) DIC 11 Configuration Digital Input 11 (0÷187c) DIC 12 Configuration Digital Input 12 (0+187c) (Only for IPRC215D) DIC 13 Configuration Digital Input 13 (0÷187c) (Only for IPRC215D) DIC 14 Configuration Digital Input 14 (0÷187c) (Only for IPRC215D) DIC 15 Configuration Digital Input 15 (0÷187c) (Only for IPRC215D) DIC 16 Configuration Digital Input 16 (0÷187c) (Only for IPRC215D) DIC 17 Configuration Digital Input 17 (0+187c) (Only for IPRC215D) DIC 18 Configuration Digital Input 18 (0+187c) (Only for IPRC215D) DIC19 Configuration Digital Input 19 (0+187c) (Only for IPRC215D) DIC 20 Configuration Digital Input 20 (0÷187c) (Only for IPRC215D) DIC 21 Configuration Digital Input 21 (0÷187c) DIC 22 Configuration Digital Input 22 (0÷187c) DIC 23 Configuration Digital Input 23 (0÷187c) DIC 24 Configuration Digital Input 24 (0÷187c) (Only for IPRC215D) DIC 25 Configuration Digital Input 25 (0+187c) (Only for IPRC215D) DIC 26 Configuration Digital Input 26 (0+187c) (Only for IPRC215D) DIC 27 Configuration Digital Input 27 (0÷187c) (Only for IPRC215D) DIC 28 Configuration Digital Input 28 (0÷187c) (Only for IPRC215D) DIC 29 Configuration Digital Input 29 (0÷187c) (Only for IPRC215D) DIC 30 Configuration Digital Input 30 (0+187c) (Only for IPRC215D) DIC 31 Configuration Digital Input 31 (0÷187c) (Only for IPRC215D) DIC 32 Configuration Digital Input 32 (0÷187c) (Only for IPRC215D) DIC 33 Configuration Digital Input 33 (0÷187c) (Only for IPRC215D) DIC 34 Configuration Digital Input 34 (0+187c) (Only for IPRC215D) DIC 35 Configuration Digital Input 35 (0+187c) (Only for IPRC215D) DIC 36 Configuration Digital Input 36 (0÷187c) (Only for IPRC215D) DIC 37 Configuration Digital Input 37 (0+187c) (Only for IPRC215D) DIC 38 Configuration Digital Input 38 (0÷187c) (Only for IPRC215D) DIC 39 Configuration Digital Input 39 (0÷187c) (Only for IPRC215D) DIC 40 Configuration Digital Input 40 (0÷187c) (Only for IPRC215D)

- **DIC 41** Configuration Digital Input 41 (0÷187c) (Only for IPRC215D)
- DIC 42 Configuration Digital Input 42 (0÷187c) (Only for IPRC215D)
- DIC 43 Configuration Digital Input 43 (0÷187c) (Only for IPRC215D)

6.1.39 DIGITAL-OUTPUTS (parameters DOC1- DOC36)

- **DOC 1** Configuration Digital Output 1 (0÷150c)
- **DOC 2** Configuration Digital Output 2 (0÷150c)
- DOC 3Configuration Digital Output 3 (0÷150c)DOC 4Configuration Digital Output 4 (0÷150c)
- **DOC 5** Configuration Digital Output 4 (0÷150c)
- **DOC 5** Configuration Digital Output 5 (0+1500) **DOC 6** Configuration Digital Output 6 (0+1500)
- **DOC 7** Configuration Digital Output 7 (0÷150c)
- **DOC 8** Configuration Digital Output 7 (0+1500)
- **DOC 9** Configuration Digital Output 9 (0÷150c) (Only for IPRC215D)
- DOC 10 Configuration Digital Output 10 (0÷150c) (Only for IPRC215D)
- **DOC 11** Configuration Digital Output 11 (0÷150c) (Only for IPRC215D)
- **DOC 12** Configuration Digital Output 12 (0÷150c) (Only for IPRC215D)
- **DOC 13** Configuration Digital Output 13 (0÷150c) (Only for IPRC215D)
- DOC 14Configuration Digital Output 14 (0÷150c) (Only for IPRC215D)DOC 15Configuration Digital Output 15 (0÷150c) (Only for IPRC215D)
- **DOC 15** Configuration Digital Output 15 (0÷150c) **DOC 16** Configuration Digital Output 16 (0÷150c)
- **DOC 16** Configuration Digital Output 16 $(0\div150c)$ **DOC 17** Configuration Digital Output 17 $(0\div150c)$
- **DOC 18** Configuration Digital Output 17 (0÷150c)
- **DOC 19** Configuration Digital Output 19 (0÷150c)
- DOC 20 Configuration Digital Output 20 (0÷150c)
- **DOC 21** Configuration Digital Output 21 (0÷150c)
- DOC 22 Configuration Digital Output 22 (0÷150c) (Only for IPRC215D)
- **DOC 23** Configuration Digital Output 23 (0÷150c) (Only for IPRC215D)
- DOC 24 Configuration Digital Output 24 (0÷150c) (Only for IPRC215D) DOC 25 Configuration Digital Output 25 (0÷150c) (Only for IPRC215D)
- DOC 25
 Configuration Digital Output 25 (0÷150c) (Only for IPRC215D)

 DOC 26
 Configuration Digital Output 26 (0÷150c) (Only for IPRC215D)
- **DOC 27** Configuration Digital Output 27 (0÷150c) (Only for IPRC215D)
- **DOC 28** Configuration Digital Output 28 (0÷150c) (Only for IPRC215D)
- DOC 29 Configuration Digital Output 29 (0÷150c) (Only for IPRC215D)
- **DOC 30** Configuration Digital Output 30 (0÷150c) (Only for IPRC215D)
- **DOC 31** Configuration Digital Output 31 (0÷150c) (Only for IPRC215D) **DOC 32** Configuration Digital Output 32 (0÷150c) (Only for IPRC215D)
- DOC 32
 Configuration Digital Output 32 (0÷150c) (Only for IPRC215D)

 DOC 33
 Configuration Digital Output 33 (0÷150c) (Only for IPRC215D)
- **DOC 34** Configuration Digital Output 35 (0÷1500) (Only for IPRC215D) Configuration Digital Output 34 (0÷1500) (Only for IPRC215D)
- **DOC 35** Configuration Digital Output 35 (0÷150c) (Only for IPRC215D)
- **DOC 36** Configuration Digital Output 36 (0÷150c) (Only for IPRC215D)

6.1.40 ANALOG-OUTPUTS (parameters AOC1- AOC15)

- AOC 1 Configuration Analog Output 1
- Range; IPRC215D/IPR210D: TAB B
- AOC 2 Configuration Analog Output 2 Range: IPRC215D/IPR210D: TAB B
- AOC 3 Configuration Analog Output 3
- Range:; IPRC215D/IPR210D: TAB B AOC 4 Configuration Analog Output 4
- AOC 4 Configuration Analog Output 4 Range:: IPRC215D/IPR210D: TAB B
- AOC 5 Configuration Analog Output 5 (Only for IPRC215D)
- Range: IPRC215D/IPR210D: TAB A
- AOC 6 Configuration Analog Output 6 (Only for IPRC215D) Range: IPRC215D/IPR210D: TAB A
- AOC 7 Configuration Analog Output 6
- Range: IPX206D/IPX106D TAB D AOC 8 Configuration Analog Output 6
- AOC 8 Configuration Analog Output 6 Range: IPX206D/IPX106D TAB D
- AOC 9 Configuration Analog Output 6

Range: IPX206D/IPX106D TAB D

- AOC 10 Configuration Analog Output 6 (Only for IPRC215D) Range: IPX215D/IPX125D TAB D
- AOC 11 Configuration Analog Output 6 (Only for IPRC215D) Range: IPX215D/IPX125D TAB D
- AOC 12 Configuration Analog Output 6 (Only for IPRC215D) Range: IPX215D/IPX125D TAB D
- AOC 13 Configuration Analog Output 6 (Only for IPRC215D) Range: IPX215D/IPX125D TAB D
- AOC 14 Configuration Analog Output 6 (Only for IPRC215D) Range: IPX215D/IPX125D TAB C
- AOC 15 Configuration Analog Output 6 (Only for IPRC215D) Range: IPX215D/IPX125D TAB C

Note: about TAB A, TAB B, TAB C, TAB D, please reference to 5.1.3 ANALOG-OUTPUTS (parameters AOC1- AOC15)

6.1.41 ANALOG-INPUTS (parameters AIC1- AIC35)

AIC 1 Configuration Analog Input 1 (0÷204) AIC 2 Configuration Analog Input 2 (0+204) AIC 3 Configuration Analog Input 3 (0÷204) AIC 4 Configuration Analog Input 4 (0÷204) AIC 5 Configuration Analog Input 5 (0+204) AIC 6 Configuration Analog Input 6 (0:204) AIC 7 Configuration Analog Input 7 (0÷204) (Only for IPRC215D) AIC 8 Configuration Analog Input 8 (0+204) (Only for IPRC215D) AIC 9 Configuration Analog Input 9 (0÷204) (Only for IPRC215D) AIC 10 Configuration Analog Input 10 (0÷204) (Only for IPRC215D) AIC 11 Configuration Analog Input 11 (0÷204) AIC 12 Configuration Analog Input 12 (0÷204) AIC 13 Configuration Analog Input 13 (0:204) AIC 14 Configuration Analog Input 14 (0:204) AIC 15 Configuration Analog Input 15 (0÷204) AIC 16 Configuration Analog Input 16 (0÷202) AIC 17 Configuration Analog Input 17 (0:202) AIC 18 Configuration Analog Input 18 (0+202) (Only for IPRC215D) AIC 19 Configuration Analog Input 19 (0+202) (Only for IPRC215D) AIC 20 Configuration Analog Input 20 (0+202) (Only for IPRC215D) AIC 21 Configuration Analog Input 21 (0÷202) (Only for IPRC215D) AIC 22 Configuration Analog Input 22 (0+202) (Only for IPRC215D) AIC 23 Configuration Analog Input 23 (0÷202) (Only for IPRC215D) AIC 24 Configuration Analog Input 24 (0÷202) (Only for IPRC215D) AIC 25 Configuration Analog Input 25 (0÷202) (Only for IPRC215D) AIC 26 Configuration Analog Input 26 (0÷202) (Only for IPRC215D) AIC 27 Configuration Analog Input 27 (0÷202) (Only for IPRC215D) AIC 28 Configuration Analog Input 28 (0÷198) AIC 29 Configuration Analog Input 29 (0+198) AIC 30 Configuration Analog Input 30 (0÷198) AIC 31 Configuration Analog Input 31 (0÷198) AIC 32 Configuration Analog Input 32 (0÷198) (Only for IPRC215D) AIC 33 Configuration Analog Input 33 (0÷198) (Only for IPRC215D) AIC 34 Configuration Analog Input 34 (0+198) (Only for IPRC215D) AIC 35 Configuration Analog Input 35 (0+198) (Only for IPRC215D)

6.1.42 Coresense configuration (CO1- CO30)

CO1 Address coresense 1. Serial address of the coresense connected to the digital output 1 (70-73 connection) (1-15; "nu" means not used)

- CO2 Address coresense 2. Serial address of the coresense connected to the digital output 2 (71-73 connection) (1-15; "nu" means not used)
- CO3 Address coresense 3. Serial address of the coresense connected to the digital output 3 (72-73 connection) (1-15; "nu" means not used)
- O4 Address coresense 4. Serial address of the coresense connected to the digital output 4 (74-73 connection) (1-15; "nu" means not used)
- CO5 Address coresense 5. Serial address of the coresense connected to the digital output 5 (77-76 connection) (1-15; "nu" means not used)
- CO6 Address coresense 6. Serial address of the coresense connected to the digital output 6 (78-83 connection) (1-15; "nu" means not used)
- CO7 Address coresense 7. Serial address of the coresense connected to the digital output 7 (79-83 connection) (1-15; "nu" means not used)
- CO8 Address coresense 8. Serial address of the coresense connected to the digital output 8 (80-76 connection) (1-15; "nu" means not used)
- CO9 Address coresense 9. IPRC215D only- Serial address of the coresense connected to the digital output 9 (81-76 connection) (1-15; "nu" means not used)
- CO10 Address coresense 10. IPRC215D only- Serial address of the coresense connected to the digital output 10 (82-83 connection) (1-15; "nu" means not used)
- CO11 Address coresense 11. IPRC215D only- Serial address of the coresense connected to the digital output 11 (84-90 connection) (1-15; "nu" means not used)
- CO12 Address coresense 12. IPRC215D only- Serial address of the coresense connected to the digital output 12 (85-88 connection) (1-15; "nu" means not used)
- CO13 Address coresense 13. IPRC215D only- Serial address of the coresense connected to the digital output 13 (86-88 connection) (1-15; "nu" means not used)
- CO14 Address coresense 14. IPRC215D only- Serial address of the coresense connected to the digital output 14 (91-90 connection) (1-15; "nu" means not used)
- CO15 Address coresense 15. IPRC215D only- Serial address of the coresense connected to the digital output 15 (93-88 connection) (1-15; "nu" means not used)

Configuration of CO16 - CO30, to configure coresense model type:

CO16 Coresense model 1

Range: 1÷3 1=R112 2=R1011 3=R1501

CO17 Coresense model 2

Range: 1÷3 1=R112 2=R1011 3=R1501

CO18 Coresense model 3

Range: 1÷3 1=R112 2=R1011 3=R1501

CO19 Coresense model 4

Range: 1÷3

1=R112 2=R1011 3=R1501 CO20 Coresense model 5 Range: 1÷3 1=R112 2=R1011 3=R1501 CO21 Coresense model 6 Range: 1÷3 1=R112 2=R1011 3=R1501 CO22 Coresense model 7 Range: 1÷3 1=R112 2=R1011 3=R1501 CO23 Coresense model 8 Range: 1÷3 1=R112 2=R1011 3=R1501 CO24 Coresense model 9 Range: 1÷3 1=R112 2=R1011 3=R1501 CO25 Coresense model 10 Range: 1÷3 1=R112 2=R1011 3=R1501 CO26 Coresense model 11 Range: 1÷3 1=R112 2=R1011 3=R1501 CO27 Coresense model 12 Range: 1÷3 1=R112 2=R1011 3=R1501 CO28 Coresense model 13 Range: 1÷3 1=R112 2=R1011 3=R1501 CO29 Coresense model 14 Range: 1÷3 1=R112 2=R1011 3=R1501

CO30 Coresense model 15 Range: 1÷3 1=R112 2=R1011 3=R1501

NOTE:

The IProRACK recognized the parameters group CO only at the power-on. Every time it is necessary to modify these parameters PLEASE REBOOT THE IProRACK. The parameters CO1-CO15 can be configured only if the load that is connected to the relative digital output is a compressor type. If for example the digital output 1 is configured as FAN automatically after the reboot the parameter CO1 returns to a value NU (16)

6.1.43 HVAC COOLING CONTROL (CC01-CC07)

- CC01 Activation delay between Pump and Solenoid valve Range 0:600 sec
- CC02 De-activation delay between Solenoid valve and Pump Range 0÷600 sec
- CC03 Set point for Pump for HVAC control Range -50.0°C ÷ 100.0°C; -58 ÷ 212 °F;
- CC04 Differential for CC03 Range 0.1 ÷ 30.0°C; 1÷ 54°F
- CC05 Gascooler outlet temperature threshold to enable the HVAC stop Range -50.0°C ÷ 100.0°C; -58 ÷ 212 °F;
- CC06 HVAC stop delay with suction temperature > SETC1 + differential + parallel compr. at 100% + gas cooler outlet temperature > CC05 Range 0÷255 min
- CC07 HVAC enabling delay after stop for high temperature conditions Range 0÷255 min

6.1.44 GAS COOLER HEAT RECLAIM HTRC (HTRC0-HTRC46)

- HTRC0 Type of input for Pressure modulation during Heat reclaim
- (0 = Voltage; 1 = temperature) HTRC1 Start point for the HR regulation
- Range: 0.000 ÷ HTRC2 V; 4.000 ÷ HTCR2 mA
- HTRC2 End point for the HR regulation Range: HTRC1÷10.000 V; HTCR1÷20.000 mA
- HTRC3 Pressure set point to use when the HR input has the HTRC1 value Range: 50.00÷HTRC4 bar; 725÷HTRC4 PSI; 5000÷HTRC4 KPA UM: according to CF26
- HTRC4
 Pressure set point to use when the HR input has the HTRC2 value Range:
 HTRC3÷120.00 bar; HTRC3÷1740 PSI; HTRC3÷12000 KPA

 UM:
 according to CF26
- HTRC5
 Delta pressure step from H-R to Normal Regulation Range:
 0.10÷15.00 bar; 1÷220PSI; 10÷1500 KPA

 UM:
 according to CF26
- HTRC6 Time for the HTRC5 pressure step from H-R to normal regulation

Range: 1÷15 UM: min HTRC7 Low discharge temperature to stop H-R Range: -40.0+150°C; -40+302°F UM: according to CF26 HTRC8 Differential to restart H-R when is stopped by low discharge temperature Range: 0.1+15.0°C; 1+30°F UM: according to CF26 HTRC9 Heat reclaim stop delay with discharge temperature below HTRC7 Range: 1÷15 UM min HTRC10 Low post exchanger CO2 temperature to stop H-R -40.0÷150°C; -40÷302°F Range: UM: according to CF26 HTRC11 Differential to restart H-R when is stopped by low post exchanger temperature Range: 0.1+15.0°C; 1+30°F UM: according to CF26 HTRC12 Heat reclaim stop delay with post heat exchanger temperature below HTRC10 Range: 1÷15 UM: min HTRC13 H-R restart time when is stopped by: no one compressor running, low discharge temperature, low post heat exchanger temperature Range: 0÷60 UM: min HTRC14 Water tank temperature set point (HTRC0 = 1) for HR1 Range: 10+90°C: 50+194°F UM: according to CF26 HTRC15 Water tank temperature regulation band (HTRC0 = 1) for HR1 1÷30°C: +2÷60°F Range: according to CF26 UM: HTRC16 Temperature differential set point at outlet and inlet of HR1 (HTRC0 = 1) Ranae: 1÷30°C: 1÷60°F UM: according to CF26 HTRC17 Temperature differential regulation band (HTRC0 = 1) for HR1 Range: 1÷30°C; 1 2÷60°F 1÷60°F according to CF26 UM: HTRC18 Delta pressure step from Normal Regulation to H-R regulation 0.1+15.0bar; 1+220PSI; 10+1500KPA Range: according to CF26 UM: HTRC19 Time for the HTRC16 pressure step from Normal Regulation to H-R regulation Range: 1÷15 UM: min HTRC20 Low HR2 outlet temperature to stop H-R, when H-R 2 is working. It's detected by the probe set as Tphr2 Ranae: -40÷150°C: -40÷302°F UM: according to CF26

HTRC21 Heat reclaim stop delay with HR2 outlet temperature below HTRC20

Range:	1÷15
UM:	min
HTRC22	Water tank temperature set point for HR2
Range:	10÷90°C; 50÷194°F
UM:	according to CF26
HTRC23	Water tank temperature regulation band for HR2
Range:	1÷30°C; 4 2÷60°F
UM:	according to CF26
HTRC24	Temperature differential set point at outlet and inlet of HR2
Range:	1÷30°C; 1÷60°F
UM:	according to CF26
HTRC25	Temperature differential regulation band for HR2
Range:	1÷30°C; 4 2÷60°F
UM:	according to CF26
HTRC26	HR1 min analog output
Range:	0÷HTRC27
UM:	%
HTRC27	HR1 max analog output
Range:	HTRC26÷100
UM:	%
HTRC28 Range: UM:	Max % variation of HR1 analog output per second 1÷100 %
HTRC29	HR2 min analog output
Range:	0÷HTRC30
UM:	%
HTRC30	HR2 max analog output
Range:	HTRC29÷100
UM:	%
HTRC31 Range: UM:	Max % variation of HR2 analog output per second 1÷100 %
HTRC32	Time for flow switch 1 verification
Range:	0÷15
UM:	sec
HTRC33	Time for flow switch 2 verification
Range:	0÷15
UM:	sec
HTRC34 Range: UM:	Time pump 1 on after reaching the set point $0{\div}600$
	Sec
HTRC35 Range: UM:	sec Time pump 2 on after reaching the set point 0÷600 sec

HTRC37 Range: HTRC38 Range:	Pump 2 regulation: tank water or differential 0÷1 0 = Tank; 1 = Differential Gas cooler by-pass enabled 0÷1 0 = no; 1 = yes
HTRC39	Differential for gas cooler by pass enabled
Range:	0.0÷20.0°C; 0÷36°F
UM:	according to CF26
HTRC40 Range:	Time for confirmation of gas cooler bypass activation $0\dot{-}600s$
HTRC41	Water tank high temperature alarm for HR1
Range:	10÷100°C; 50÷212°F
UM:	according to CF26
HTRC42	Water tank high temperature alarm for HR2
Range:	10÷100°C; 50÷212°F
UM:	according to CF26
HTRC43	End pont for gas cooler by-pass during HR
Range:	HTRC2÷HTCR44 V; HTCR2÷ HTCR44 mA
HTRC44	Start pont for gas cooler by-pass during HR
Range:	HTRC43÷10.00 V; HTCR43÷ 20.00 mA
HTRC45	Differential to disabled gas cooler by pass

Range: 1.00÷10.00bar; 14÷145PSI; 100÷1000KPA UM: according to CF26

HTRC46 Disable heat reclaim in case of low liquid level in the flash tank

Range:

0 = no; 1 = yes;

0÷1

HTRC47 Disable heat reclaim in case of MT compressor (circuit 1 compressors) off (no-yes)

Range: 0÷1

0 = no; 1 = yes;If all the medium temperature compressors are off, it's possible to decide if Heat Reclaim will be disabled or keep on working

6.1.45 Gas cooler (GC1-GC111)

6.1.45.1 TRANSCRITICAL REGULATION

- GC01 Setpoint for Subcritical and Transcritical mode switch
- Range: -3.0÷42.0°C; 27÷108°F
- UM: according to CF26
- GC02 Hysteresis for Subcritical and Transcritical mode switch

Range: 0.0÷20.0°C; 0÷36°F UM: according to CF26

- GC03 Gas cooler Minimum pressure set point in transcritical mode
- Range: 0.00÷200.00 bar; 0÷2900 PSI; 0÷20000 KPA UM: according to CF26

GC04 Proportional band in transcritical mode for PID regulation of HPV

 Range:
 0.00+500.00 bar; 0+7250 PSI; 0+50000 KPA

 UM:
 according to CF26

GC05 Proportional band offset for PID regulation of HPV

Ranae: -10.0+50.00 bar: -145+725 PSI: -1000+5000 KPA UM: according to CF26

GC06 Integral time for PID regulation of HPV

Ranae: 0÷1000 UM: sec

GC07 Derivative time for PID regulation of HPV

Ranae: 0÷1000

GC11 Maximum opening percentage for HPV valve

Ranae: GC12-100 UM: %

GC12 Minimum opening percentage for HPV valve

Ranae: 0÷GC11 UM: %

61452 **TRANSCRITICAL MAX PRESSURE - SAFETIES**

GC13 Maximum allowable pressure set point in gas cooler

- Range: 0.00+200.00 bar; 0+2900 PSI; 0+20000 KPA
- UM: according to CF26

The parameter GC13 is the maximum allowable pressure set point for gas cooler. If from the formula Temp/press, that maximize the COP in trans mode, a higher value is calculated, the GC13 value is used as set point

GC14 Set point to restart opening HPV valve after a HP digital input trigger

- Range: 0.00+200.00 bar; 0+2900 PSI; 0+20000 KPA UM
 - according to CF26 After a HP d.i. trigger, the HPV valve doesn't open till the pressure does below this value.

GC15 Safety delay before restarting standard regulation after the HP digital input deactivation

- Range: $0 \div 255$ UM:
- sec

GC18 Fix opening percentage or subcooling action of HPV in subcritical mode Range:

0:100: the HPV valve is open at this percentage in subcritical mode with -1: the HPV valve is managed to maintain the GC87 subcooling temperature in subcritical mode %

UM:

GC19 High pressure alarm in gas cooler, threshold to stop compressors in case of high pressure in the gas cooler, same behavior of AL25

Range: 0.00+150.00 bar; 0+2175 PSI; 0+15000 KPA

UM according to CF26

If the condenser pressure reaches the value GC19 and AL27 = YES, the compressor of the circuit 1, parallel, and Circuit 2 are switched off every AL28 sec.

The fans are forced at maximum speed.

The alarm recovers when the pressure goes below GC19 -5bar (72.5PSI).

FLASH TANK REGULATION 6.1.45.3

GC20 Flash tank pressure setpoint

- Range: 0.00+90.00 bar; 0+1305 PSI; 0+9000 KPA
- UM: according to CF26

Note: if parallel compressors are used, the max limit will be SETPC. If the user tries to set GC20 ≥ SETPC, the flash tank pressure set point is forced at SETPC.
GC21	Proportional band for	PID regulation of ByPass Valve (BPV)
------	-----------------------	--------------------------------------

Range: 0.00÷500.00 bar; 0÷7250 PSI; 0÷50000 KPA UM: according to CF26

GC22 Proportional band offset for PID regulation of ByPass Valve (BPV)

Range: 0.00÷500.00 bar; 0÷7250 PSI; 0÷50000 KPA UM: according to CF26

GC23 Integral time for PID regulation of BPV

- Range: 0+1000
- UM: sec

GC24 Derivative sampling time for PID regulation of BPV

Range: 0÷1000 UM: sec

GC25 Derivative time for PID regulation of BPV

Range:	0÷1000
UM:	sec

GC26 Maximum opening percentage for BPV

Range: GC27÷100 UM: %

GC27 Minimum opening percentage for BPV

- Range: 0÷GC26
- UM: %

6.1.45.4 SAFETIES

GC28 Flash tank high pressure setpoint alarm

Range: GC29÷150.00 bar; GC29÷2175 PSI; GC29÷15000 KPA *UM*: according to CF26

GC29 Flash tank high pressure setpoint Pre-Alarm

- Range: 0.00÷GC28 bar; 0÷ GC28 PSI; 0÷ GC28 KPA UM: according to CF26
- GC30 Differential for recovery of flash tank high pressure alarm
- Range: 0.00÷500.00 bar; 0÷7250 PSI; 0÷50000 KPA UM: according to CF26

GC31 Flash tank low pressure setpoint alarm

- Range: 0.00÷ GC29 bar; 0÷GC29PSI; 0÷GC29KPA
- UM: according to CF26

GC32 Differential for recovery of low pressure alarm

Range: 0.00÷500.00 bar; 0÷7250 PSI; 0÷50000 KPA UM: according to CF26

GC33 Rate at which the HPV will close in safe mode

- Range: 0÷600
- UM: sec

GC34 HPV % open during Subcritical with sensor failure Range: 0÷100

Range: 0÷100 UM: %

GC35 HPV % open during Transcritical with sensor failure

Range: 0÷100 UM: %

GC36 HPV % open during low pressure safety mode

Range: 0÷100 UM: %

GC37 BPV % open during high pressure safety mode Range: 0÷100 UM: %

6.1.45.5 **XEV20D 1: VALVE SETTINGS**

**** WARNING ABOUT THE VALVE SETTING: the unique and valid reference has to be considered the datasheet made by valve manufacturer. Dixell cannot be considered responsible in case of valve damaging due to wrong settings******

GC38 Valves types for value1 and 2 of XEV20D 1

Range: 1÷4

- Unipolar 1:
- 2: Bipolar normal
- 3: Bipolar wave
- 4: Bipolar, normal mode, CV

NOTE: both the valve must be of the same type: unipolar or bipolar.

GC39 Max number of steps for valve 1 of XEV20D 1

- Ranae: 0÷800
- UM: 10step

NOTE: the resolution of this parameter is 10 steps. GC39 = 100 means the valve has 1000 steps

Min steps for valve 1 of XEV20D 1 GC40

Range:

0÷500 UM: step

> NOTE: the resolution of this parameter is 1 step. With GC39 = 100 and GC40 = 30 means the valve has 1000 steps, and the regulation band is between step 30 and step 1000. The controller will consider the 30th step as "zero point" of the regulation.

GC41 Extra steps for Valve1 during close of XEV20D_1

Range: 0÷500 UM:

step NOTE: controller will perform additional GC41 steps during closing phase. See documentation of valve manufacturer about the setting of this parameter.

GC42 Step rate for valve 1 of XEV20D 1

Range: 10÷600

UM: step/sec

NOTE: both the valve must have the same step rate. If the valves have different step use one XEV20D for each valve.

GC43 Moving current for valve 1 of XEV20D_1

Ranae: 0÷100 10mA

UM:

NOTE: the resolution of this parameter is 10mA. GC43 = 10 means the valve requires 100mA to be moved properly.

GC44 Holding current for valve 1 of XEV20D 1

Ranae: 0÷100

UM: 10mA

> **NOTE:** the resolution of this parameter is 10mA. GC44 = 8 means the valve requires 80mA to hold the position.

GC45 Max steps for valve 2 of XEV20D_1

Range: 0÷800 UM: 10step **NOTE:** the resolution of this parameter is 10 steps. GC45 = 100 means the valve has 1000 steps

GC46 Min steps for valve 2 of XEV20D 1

Range: 0÷500

UM: step

NOTE: the resolution of this parameter is 1 step. With GC45 = 100 and GC46 = 30 means the valve has 1000 steps, and the regulation band is between step 30 and step 1000. The controller will consider the 30th step as "zero point" of the regulation.

GC47 Extra steps for Valve2 close of XEV20D 1

Ranae: 0÷500 UM: step

> NOTE: controller will perform additional GC41 steps during closing phase. See valve manufacturer documentation about the setting of this parameter.

GC48 Step rate for valve 2 of XEV20D 1

- Range: 10÷600
- UM: step/sec

NOTE: both the valve must have the same step rate. If the valves have different step use one XEV20D for each valve.

GC49 Moving current for valve 2 of XEV20D_1

- Ranae: 0÷100
- UM: 10mA

NOTE: the resolution of this parameter is 10mA. GC49 = 10 means the valve requires 100mA to be moved properly

GC50 Hold current for valve 2 of XEV20D 1

- Range: 0÷100
- UM: 10mA

NOTE: the resolution of this parameter is 10mA. GC50 = 8 means the valve requires 80mA to hold the position.

GC51 Valve 1 of the XEV20D of XEV20D_1 function 0÷2

Range:

- 0: HPV, high pressure valve
- 1: BGV, by pass valve
- 2: not used

GC52 Valve 2 of the XEV20D of XEV20D 1 function

Range:

0÷2

- 0: HPV, high pressure valve
- 1: BGV, by pass valve
- 2: not used
- GC103 DutyCycle1 Duty Cycle for Valve1 of XEV20D 1 Range: $10 \div 100$ UM: %
- GC104 DutyCycle2 Duty Cycle for Valve2 of XEV20D_1 Range: 10÷100 UM: %

6.1.45.6 VALVE SERVICE FUNCTIONS

- GC53 Hour when the HPV calibration mode initiate
- Range: $0\div 24:0 = disable$
- UM: hour

GC54 HPV Interval days when calibrating happens

Ranae: $0\div7:0 = disable$ UM: day

GC55 Range: UM:	Hour when the BY-PASS VALVE calibration mode initiate $0\div24$; $0 = disable$ hour
GC56 Range: UM:	BY-PASS VALVE Interval days when calibrating happens $0\div7; 0 = disable day$
GC57	HPV Calibration T Frame
Range:	0÷12
UM:	hour
GC58	HPV Calibration Min Valve%
Range:	0÷100
UM:	%
GC59 Range: (HPV Calibration Direct D÷1 0: Close 1: Open
GC60	BY-PASS VALVE Calibration T Frame
Range:	0÷12
UM:	hour
GC61	BY-PASS VALVE Calibration Min Valve%
Range:	0÷100
UM:	%
GC62 Range:	BY-PASS VALVE Calibration Direct 0÷1 0: Close 1: Open

6.1.45.7 OTHERS

GC63 OverrideCMD: if 1, override mode, 0, normal mode NO(0)-YES(1) Range: 0÷1 0: no 1: yes GC64

Override time:1~30 minutes, when OverrideCMD is from 0 to 1, timer starts running, when timer is up, set 0 to OverrideCMD Range: 1÷30 UM: min

6.1.45.8 XEV20D_2: VALVE SETTINGS

**** WARNING ABOUT THE VALVE SETTING: the unique and valid reference has to be considered the datasheet made by valve manufacturer. Dixell cannot be considered responsible in case of valve damaging due to wrong settings******

GC65 Valves types for value1 and 2 of XEV20D 2

1÷4 Range:

- 1: Unipolar 2:
 - Bipolar normal
- Bipolar wave 3:
- 4: Bipolar, normal mode, CV

NOTE: both the valve must be of the same type: unipolar or bipolar.

GC66 Max steps for valve 1 of XEV20D_2

Range: 0÷800

UM: 10step

NOTE: the resolution of this parameter is 10 steps. GC66 = 100 means the valve has 1000 steps

GC67 Min steps for valve 1 of XEV20D 2

Range: 0÷500

UM: step

NOTE: the resolution of this parameter is 1 step. With GC66 = 100 and GC67 = 30 means the valve has 1000 steps, and the regulation band is between step 30 and step 1000. The controller will consider the 30th step as "zero point" of the regulation.

GC68 Extra steps for Valve1 close of XEV20D 2

- Range: 0÷500 step
- UM

NOTE: controller will perform additional GC68 steps during closing phase. See documentation of valve manufacturer about the setting of this parameter.

GC69 Step rate for valve 1 of XEV20D_2

- Ranae: 10÷600
- UM: step/sec

NOTE: both the valve must have the same step rate. If the valves have different step use one XEV20D for each valve.

GC70 Moving current for valve 1 of XEV20D 2

- Range: 0÷100
- UM: 10mA

NOTE: the resolution of this parameter is 10mA. GC70 = 10 means the valve requires 100mA to be moved properly.

GC71 Hold current for valve 1 of XEV20D 2

- Range: 0÷100
- UM: 10mA

NOTE: the resolution of this parameter is 10mA. GC71 = 8 means the valve requires 80mA to hold the position.

GC72 Max steps for valve 2 of XEV20D 2

- 0÷800 Range:
- UM: 10step

NOTE: the resolution of this parameter is 10 steps. GC72 = 100 means the valve has 1000 steps

GC73 Min steps for valve 2 of XEV20D_2

- Rande: 0÷500
- UM: step

NOTE: the resolution of this parameter is 1 step. With GC72 = 100 and GC73 = 30 means the valve has 1000 steps, and the regulation band is between step 30 and step 1000. The controller will consider the 30th step as "zero point" of the regulation.

GC74 Extra steps for Valve2 close of XEV20D 2

Range: 0÷500

UM: step

> NOTE: controller will perform additional GC74 steps during closing phase. See valve manufacturer documentation about the setting of this parameter.

GC75 Step rate for valve 2 of XEV20D 2

Range: 10÷600

UM: step/sec

> NOTE: both the valve must have the same step rate. If the valves have different step use one XEV20D for each valve.

GC76 Moving current for valve 2 of XEV20D 2

Ranae: 0÷100

UM: 10mA **NOTE:** the resolution of this parameter is 10mA. GC76 = 10 means the valve requires 100mA to be moved properly

GC77 Hold current for valve 2 of XEV20D_2

Range: 0÷100

UM: 10mA

NOTE: the resolution of this parameter is 10mA. GC77 = 8 means the valve requires 80mA to hold the position.

GC78 Valve 1 of the XEV20D of XEV20D_2

- Range:
- 1: Unipolar 2: Bipolar

1÷2

NOTE: both the valve must be of the same type: unipolar or bipolar.

GC79 Valve 2 of the XEV20D of XEV20D_2

Range:

- 1÷2
 1: Unipolar
 2: Bipolar
 NOTE: both the valve must be of the same type: unipolar or bipolar.
- GC105 DutyCycle1 Duty Cycle for Valve1 of XEV20D_2 Range: 10÷100 UM: %
- GC106 DutyCycle2 Duty Cycle for Valve2 of XEV20D_2
 - Range: 10÷100 UM: %

6.1.45.9 SUBCRITICAL REGULATION

GC80 Gas cooler minimum pressure set point in subcritical mode with GC18 = -1

Range 0÷100 bar, 0÷1450PSI With GC18 = -1 the HPV valve has to maintain at list this minimum pressure in the gas cooler. If H-R function is enabled, this minimum pressure could be override by the heat reclaim set point.

- GC81 Proportional band in subcritical mode for PID regulation of HPV
- Range: 0.00÷500.00 bar; 0÷7250 PSI; 0÷50000 KPA UM: according to CF26

GC82 Proportional band offset for HPV in subcritical mode

 Range:
 0.00+500.00 bar; 0+7250 PSI; 0+50000 KPA

 UM:
 according to CF26

GC83 Integral time for PID regulation of HPV in subcrtical mode

Range: 0÷1000 UM: sec

GC84 Derivative time for PID regulation of HPV in subcrtical mode Range: 0+1000

Range: 0÷10 UM: sec

- GC85
 HPV MAX variation percentage every second in subcritical mode

 Range:
 0÷100% with 0 no limitation
- GC86
 BPV MAX variation percentage every second in subcritical mode

 Range:
 0÷100% with 0 no limitation

GC87 Delta temperature for subcooling function in subcritical mode Range: 0÷12°C; 0÷24°F

6.1.45.10 VALVE HP DYNAMIC LIMITATION

GC92 Sensibility value for HP valve limitation

- Range
- 0 = Function disabled (Default value)
- 1 = Soft limitation
- 2 = Medium limitation
- 3 = Hard limitation

6.1.45.11 GAS COOLER FAN OPTIMIZATION

GC96 Duration of fan optimization in case of compressor starts(100s)

Range: 0÷255 UM: sec

 $0 \div 3$

GC97 Minimum fan speed during fan optimization (20%)

- Range: 0÷100 with 0 no mimimum speed
- UM: %

GC107 Enable HPV pre-set at first compressor activation

Range: 0+1

0 : NO = function disabled;

1: YES = function enabled

GC108 HPV opening before first compressor activation

Range: GC12 ÷GC11; UM: %

GC109 Time HPV remains at GC108 before first compressor activation

Range: 1÷60; *UM*: s

GC110 Delay for compressor activation after fan start

Range: 1÷60; *UM*: s

GC111 Dynamic flash tank set point

Range: $0\div1$; 0 : NO = disabled; 1: YES = enabled

6.1.46 De-Superheaters (DSH1-DSH18)

DSH1 Minimum set point for the de-superheater 1

- is used for the de-superheat 1 Range: -40+110°C/-40+230°F
- UM: According to CF26

DSH2 Differential for the de-superheat 1

is temperature differential between external temperature and the temperature detected at the outlet of the de-superheater 1. *Range*: 0.0÷12.0°C; 0÷24°F

Range: 0.0÷12.0°C; 0÷24°F UM: according to CF26

DSH3 Regulation band for the de-superheat 1

Range: 0.1÷30.0 °C; 1÷50 °F; UM: according to CF26

DSH4 Regulation activation for the de-superheat 1

Range: 0÷3; 0

on = Regulation always active if the iProRACK in on.

- 1 **Circ1** = Regulation on if at least 1 compressor of the circuit 1 is on.
- 2 **Circ2** = Regulation on if at least 1 compressor of the circuit 2 is on.
- 3 **PC** = Regulation on if at least 1 Paralell compressor is on.

DSH5 Minimum value for the analogue Output of de-superheater 1

Range: 0 ÷ DSH6

DSH6 Maximum value for the analogue Output of de-superheater 1

Range: DSH5 ÷ 100

DSH7 Minimum set point for the de-superheater 2

is used for the de-superheat 2

Range: -40÷110°C/-40÷230°F

UM: According to CF26

DSH8 Differential for the de-superheat 2

is temperature differential between external temperature and the temperature detected at the outlet of the de-superheater 2.

Range: 0.0÷12.0°C; 0÷24°F

UM: according to CF26

DSH9 Regulation band for the de-superheat 2

- Range: 0.1÷30.0 °C; 1÷50 °F;
- UM: according to CF26

DSH10 Regulation activation for the de-superheat 2

- Range: 0÷3;
 - *on* = Regulation always active if the iProRACK in on.
 - 1 **Circ1** = Regulation on if at least 1 compressor of the circuit 1 is on.
 - 2 **Circ2** = Regulation on if at least 1 compressor of the circuit 2 is on.
 - 3 **PC** = Regulation on if at least 1 Paralell compressor is on.

DSH11 Minimum value for the analogue Output of de-superheater 2

Range: 0 ÷ DSH12

DSH12 Maximum value for the analogue Output of de-superheater 2

Range: DSH11 ÷ 100

DSH13 Minimum set point for the de-superheater 3

is used for the de-superheat 3

- Range: -40÷110°C/-40÷230°F
- UM: According to CF26

DSH14 Differential for the de-superheat 3

is temperature differential between external temperature and the temperature detected at the outlet

of the de-superheater 3

Range: 0.0÷12.0°C; 0÷24°F UM: according to CF26

DSH15 Regulation band for the de-superheat 3

- Range: 0.1÷30.0 °C; 1÷50 °F;
- UM: according to CF26

DSH16 Regulation activation for the de-superheat 3

Range: 0÷3;

- *0* **on** = Regulation always active if the iProRACK in on.
- 1 **Circ1** = Regulation on if at least 1 compressor of the circuit 1 is on.
- 2 **Circ2** = Regulation on if at least 1 compressor of the circuit 2 is on.
- 3 **PC** = Regulation on if at least 1 Paralell compressor is on.

DSH17 Minimum value for the analogue Output of de-superheater 3

Range: 0 ÷ DSH18

DSH18 Maximum value for the analogue Output of de-superheater 3

Range: DSH19 ÷ 100

6.1.47 Oil management (OIL1-OIL28)

OIL1 Range:	Oil management type 0+5 0 Disabled 1 Oil management according to compressor regulation 2 Oil management according to low level digital input in oil separator 3 Oil management according to low and high level digital inputs in oil separator 4 Oil management according to differential pressure and low level digital inputs 5 Oil management according to differential pressure and low/high level digital inputs
OIL2	ON time Oil injection valve circuit 1
Range:	0÷255
UM:	sec
OIL3	OFF time Oil injection valve circuit 1
Range:	0÷1500
UM:	sec
OIL4	ON time Oil injection valve circuit 1 with compr. on
Range:	0÷255
UM:	sec
OIL5	OFF time Oil injection valve circuit 1 with compr. on
Range:	0÷1500
UM:	sec
OIL6	ON time Oil injection valve circuit 2
Range:	0÷255
UM:	sec
OIL7	OFF time Oil injection valve circuit 2
Range:	0÷255
UM:	sec
OIL8	ON time Oil injection valve circuit 2 with compr. on
Range:	0÷255
UM:	sec
OIL9	OFF time Oil injection valve circuit 2 with compr. on
Range:	0÷255
UM:	sec
OIL10	Activation delay of Oil injection valve circuit 1
Range:	0÷255
UM:	sec
OIL11	Activation delay of Oil injection valve circuit 2
Range:	0÷255
UM:	sec
OIL12 Range: UM:	Alarm delay for low level oil in circuit 1 -1÷255; With -1 the low oil level alarm is not signaled. sec
OIL13	Alarm delay for low level oil in circuit 2
Range:	0÷255 (0 = alarm disabled)
UM:	sec

OIL14 Range:	Action before low oil level alarm circuit 1 0÷1
	 Only warning (no actions) Inverter to max speed (if present)
OIL15 Range:	Action before low oil level alarm circuit 2 0÷1
J. J.	Only warning (no actions)Inverter to max speed (if present)
OIL16 Range ⁻	Action during low oil level alarm circuit 1
nungo.	 Warning plus alarm relay ON Warning plus alarm relay ON all the compressors forced OFF
OIL17 Range [:]	Action during low oil level alarm circuit 2
, langer	 Warning plus alarm relay ON Warning plus alarm relay ON all the compressors forced OFF
OIL18 Range: UM:	Pressure differential for oil management 0.00÷50.00 bar; 0÷725 PSI; 0÷5000 KPA according to CF26
OIL19 Range: UM:	Differential for OIL18 0.10÷10.00 bar; 1÷145 PSI; 10÷1000 KPA according to CF26
OIL20 Range:	Reference probe for differential pressure Circuit
, langer	 SPC1 = Oil receiver pressure - Suction pressure. FTP = Oil receiver pressure - Flash tank pressure.
OIL21 Range:	Oil differential pressure override with HGV_FT on
ger	0 no 1 yes
OIL22 Range: UM:	Flash tank pressure threshold for oil differential pressure override with HGV_FT on 0.10÷100.00 bar; 1÷1450 PSI; 10÷10000 KPA according to CF26
OIL23 Range: UM:	Differential for OIL22 0.10÷10.00 bar; 1÷145 PSI; 10÷1000 KPA according to CF26
OIL24 Range:	Number of retry for High level in oil separator 0÷50;
OIL25 Range: UM:	Reservoir pressure threshold for activation of reservoir unloading valve OIL27÷100.00 bar; OIL27÷1450 PSI; OIL27÷10000 KPA according to CF26
OIL26 Range: UM:	Differential of reservoir pressure threshold for activation of reservoir unloading valve 0.10÷10.00 bar; 1÷145 PSI; 10÷1000 KPA according to CF26
OIL27 Range: UM:	Reservoir pressure threshold to stop oil injection valve circuit 1 0.10÷OIL25 bar; 1÷OIL25 PSI; 10÷OIL25 KPA according to CF26
OIL28	Differential of reservoir pressure threshold to stop oil injection valve circuit 1

7 **REGULATION**

7.1 Neutral zone adjustment – only for compressors

This regulation is available only for compressors. It is used if the parameter CF18 = db (CF19 = db for circuit 2). The following observations are availables only for adjustment **without inverter**.

In this case the **neutral zone width is define by parameter RC1** is symmetrical compared to the target set point, with extremes: set+RC1/2 ... set- RC1/2.

If the pressure (temperature) is inside this zone the controller maintains the same number of loads switched on and off, without changing anything.

When the pressure (temperature) goes out from the zone, regulation starts. If the pressure is greater than SET+RC1/2, the loads are switching on with timing given by SL3 parameter.

A load is turned on only if the safety times are over:

- SL1 Minimum time between 2 following switching ON of the same compressor (0÷255 min).
- SL2 Minimum time between the switching off of a compressor and the following switching on. (0+255min).
 - Note: usually SL1 is greater than SL2
- SL5 Minimum time load on (0 5990sec)

Regulation stops when the pressure (temperature) comes back into the neutral zone.

In the following a simplify example that explains the regulation in neutral zone for compressor homogeneous with 1 step for each compressors. The safety times **SL1**, **SL2**, **SL5** are not considered. In the real regulation the load is entered or turned off only if these times are over.

Ex. Neutral zone control, compressors with same capacities, 1 step for each compressor. In this example:

TRHESHOLD

SET SETC1 target pressure/temperature compressors have to maintain neutral zone width

TIMERS

SL3	Time delay between the insertion of two different compressors
SL4	Time delay between switching off of two different compressors
SL8 = no	"SL3" delay not enabled at first calling after an equilibrium condition
SL9 = no	"SL4" delay not enabled at first calling after an equilibrium condition.

OTHER

CF18 = db	neutral zone regulation, also called "dead band"
CF22 = yES	Compressor rotation enabled

7.2 **Proportional band adjustment – for compressors and fans**

This regulation is available for compressors and fans. It is used by compressors if the parameter CF18 = Pb (CF19 = Pb for circuit 2). The following observations are availables only for adjustment without inverter. Compressors and fans work in the same way.

Example regulation for compressors:

In this case the regulation band (RC1) is divided into as many parts as there are stages according to the following formula:

steps =Tot loads circuit 1 (number of compr. or steps).

The numbers of stages switched ON is proportional to the value of the Input signal: when this distances itself from the target set point and enters the various bands, the compressors are switched ON, to be then turned OFF when the signal brings near the set point.

In this way if the pressure is greater than regulation band, all the compressors are on, if the pressure (temperature) is lower than the regulation band all the compressors are off.

Naturally also for this regulations all the delays (SL3 and SL4) safety times (SL1, SL2, SL5) are taken in account.

Regulation according to the running hours

The algorithm switchs on and off the loads according to the running hours of each load. In this way the running hours are balanced.

Example

 C1 C2 C3 C4 C5
 Tot loads = 5 compressors

 CF19 = Pb proportional band regulation

 CF22 = yES
 rotation

 SL8 = no " SL3" delay not enabled at first calling after a regulation zone.

 SL9 = no " SL4" delay not enabled at first calling after a regulation zone.

8 SCREW COMPRESSORS

Loads activation is managed by the neutral zone. They follow general rules of step compressors: The relay group is activated depending on the kind of screw compressors that has been selected on the CF1 parameter.

8.1 Regulation with screw compressors like Bitzer/ Hanbell/ Refcomp etc

Screw compressors like Bitzer use up to 3 valves for the power regulation.

The first valve is used during the starting phase for the CF28 max time, after this time, the step 2 is automatically activated.

Through the CF29 parameter it is possible to decide if the step 1 can be subsequently used during the standard thermoregulation.

Through the CF30 parameter it is possible to decide the delay between the avctivation valve and start of the compressor.(This parameter is enabled only for Bitzer)

8.1.1 Relay activation

ES. Compressor with 4 steps:

C1 = Scrw1; C2 = Step; C3 = Step; C4 = Step; CF1 = Btz

0. C1 RL01=Compressor 1 Circuit 1

1. Step RL02=Step 1 Compressor 1 Circuit 1

2. Step RL03=Step 2 Compressor 1 Circuit 1

3. Step RL04=Step 3 Compressor 1 Circuit 1

a. Activation with valves ON due to voltage presence (CF2=cL).

	C1 = Screw1	C2 = stp	C3 = stp	C4 = stp
Step 1 (25%)	ON	ON	OFF	OFF
Step 2 (50%)	ON	OFF	ON	OFF
Step 3 (75%)	ON	OFF	OFF	ON

Step 4 (100%)	ON	OFF	OFF	OFF

b. Activation with valves ON due to voltage absence (CF2=oP).

	C1 = Screw1	C2 = stp	C3 = stp	C4 = stp
Step 1 (25%)	ON	OFF	ON	ON
Step 2 (50%)	ON	ON	OFF	ON
Step 3 (75%)	ON	ON	ON	OFF
Step 4 (100%)	ON	ON	ON	ON

8.2 Regulation with screw compressors like Frascold

Screw compressors like Frascold use up to 3 valves for the power regulation.

The first valve is used during the starting phase for the CF28 max time, after this time, the step 2 is automatically activated.

Through the CF29 parameter it is possible to decide if the step 1 can be subsequently used during the standard thermoregulation.

8.2.1 Relay activation

ES. Compressor with 4 steps:

C1 = Scrw1; C2 = Step; C3 = Step; C4 = Step; CF1 = FRSC

- 0. C1 RL01=Compressor 1 Circuit 1
 - 1. Step RL02=Step 1 Compressor 1 Circuit 1
 - 2. Step RL03=Step 2 Compressor 1 Circuit 1
 - 3. Step RL04=Step 3 Compressor 1 Circuit 1

a. Activation with valves ON due to voltage presence. (CF2=cL)

	C1 = Screw1	C2 = stp	C3 = stp	C4 = stp
Step 1 (25%)	ON	OFF	OFF	OFF
Step 2 (50%)	ON	ON	ON	OFF
Step 3 (75%)	ON	ON	OFF	ON
Step 4 (100%)	ON	ON	OFF	OFF

b. Activation with valves ON due to voltage absence. (CF2=oP)

	oAi = Screw1	oAi+1 = stp	oAi+2 = stp	oAi+3 = stp
Step 1 (25%)	ON	ON	ON	ON
Step 2 (50%)	ON	OFF	OFF	ON
Step 3 (75%)	ON	OFF	ON	OFF
Step 4 (100%)	ON	OFF	ON	ON

9 MIXED CAPACITY REGULATION

9.1 Parameter involved

Label	Description
CF1	Kind of compressors:
CF4-	Power of compressor 1-6 circuit 1 for setting the capacity
CEO	of single compressors. Each parameter defines the

CF9 of single compressors. Each parameter defines the capacity of the compressor used.
 E.I. 3 compressors with following capacity: 10, 20, 40 HP. The parameters have to be set in this way: CF4=10, CF5=20, CF6=40, CF7=CF8=CF9=0.

Range Spo, Btz, Frtz, dPO

9.2 Regulation concept

If CF1 = dPO, compressors with mixed capacity are managed.

The regulation is based on neutral zone.

By parameters CF4,..CF9, the capacity of the compressors is set.

When it's requested to increase the capacity, controller will used a mix of the available capacities from the smaller one to the bigger one, trying to reduce as much as possible the difference between a capacity step and the next one.

The algorithm doesn't take care about the running hours of each single compressor, as the priority is to match the cooling request of the system with the cooling capacity of the compressors.

9.2.1 Instance 1. 4 compressors without steps, with following capacities: C1 = 10HP, C2 = 15HP, C3 = 30HP, C4 = 40HP

ES. CF1 = dPo.

CF4 = 10; CF5 = 15 CF6 = 30; CF7 = 40; CF8=CF9=0

Controller has to develop internal table with all the possible capacity steps that can be generated by the compressors:

STEP	CF4 = 10;	CF5 = 15	CF6 = 30;	CF7 = 40	TOTAL CAPACITY
1	10	-	-	-	10
2	-	15	-	-	15
3	10	15	-	-	25
4	-	-	30	-	30
5	-	-	-	40	40
6	-	15	30	-	45
7	10	-	-	40	50
8	-	15	-	40	55
9	10	15	-	40	65
10	-	-	30	40	70
11	10	-	30	40	80
12	-	15	30	40	85
13	10	15	30	40	95

NOTE: Each step can be used ONLY IF the safety timers SL1, SL2, SL5 have expired, otherwise the first next available step is used.

See below for the capacity decreasing rules.

The same algorithm is used when the capacity has to be decreased

NOTE: Some capacity steps can be not used if they are not available for safety timer reasons. In this case the controller jumps to the next available capacity stage.

Instance 1:

•

E.I. 2 Compressors with following capacities:

- Compr. 1: CF4 = 60 HP
- Compr. 2: CF5 = 70 HP

Steps:

```
Compr. 1: 3 unloaders: DOC1 = 7C; DOC2 = 8C; DOC3 = 9C; unloaders capacity = 20HP
Compr. 2: 1 unloader: DOC4 = 11C; unloaders capacity = 70HP
```

Activation sequence

	DOC1 = 7C	DOC2 = 8C	DOC3 = 9C	DOC4 = 11C	HP
1	1	0	0	0	20
2	1	1	0	0	40
3	1	1	1	0	60
4	1	0	0	1	90
5	1	1	0	1	110
6	1	1	1	1	130

De-activation sequence

	DOC1 = 7C	DOC2 = 8C	DOC3 = 9C	DOC4 = 11C	HP
1	1	1	1	1	130
2	1	1	0	1	110
3	1	0	0	1	90
4	1	1	1	0	60
5	1	1	0	0	40
6	1	0	0	0	20

The deactivation sequence is the opposite of the activation sequence.

Instance 2:

E.I. 3 Compressors with following capacities:

- Compr. 1: CF4 = 60 HP,
- Compr. 2: CF5 = 15 HP
- Compr. 3: CF6 = 100HP

Steps:

Compr. 1: 3 unloaders: DOC1 = 7C; DOC2 = 8C; DOC3 = 9C; Step capacity = 20HP **Compr. 2:** 1 unloader: DOC4 = 11C; Step capacity = 15HP **Compr. 3:** 2 unloaders: DOC5 = 15C; DOC6 = 16C Step capacity = 50HP

Activation sequence

	DOC1 = 7C	DOC2 = 8C	DOC3 = 9C	DOC4 = 11C	DOC5 = 15C	DOC6 = 16C	HP
1	0	0	0	1	0	0	15
2	1	0	0	1	0	0	35
3	1	1	0	1	0	0	55
4	1	1	1	1	0	0	75
5	1	0	0	1	1	0	85
6	1	1	0	1	1	0	105
7	1	1	1	1	1	0	125
8	1	0	0	1	1	1	135
9	1	1	0	1	1	1	155
10	1	1	1	1	1	1	175

De-activation sequence (Normal)

	DOC1 = 7C	DOC2 = 8C	DOC3 = 9C	DOC4 = 11C	DOC5 = 15C	DOC6 = 16C	HP
10	1	1	1	1	1	1	175
9	1	1	0	1	1	1	155
8	1	0	0	1	1	1	135
7	1	1	1	1	1	0	125
6	1	1	0	1	1	0	105
5	1	0	0	1	1	0	85
4	1	1	1	1	0	0	75
3	1	1	0	1	0	0	55
2	1	0	0	1	0	0	35
1	0	0	0	1	0	0	15

De-activation sequence(Abnormal)

When all the compressors on (full power), compressor 1 enters in alarm. The deactivation sequence will be modified as follow:

	DOC1 = 7C	DOC2 = 8C	DOC3 = 9C	DOC4 = 11C	DOC5 = 15C	DOC6 = 16C	HP
10	1	1	1	1	1	1	175
9	0	0	0	1	1	1	115
8	0	0	0	1	1	0	65
7	0	0	0	1	0	0	15
6	0	0	0	0	0	0	0

Instance 3:

E.I. 3 Compressors with following capacities (DOC4 can't be turned on, for the safety delay SL1-2 of compressor 2):

- Compr. 1: CF4 = 60 HP
- Compr. 2: CF5 = 15 HP
- Compr. 3: CF6 = 100HP

Steps:

Compr. 1: 3 steps: DOC1 = 7C; DOC2 = 8C; DOC3 = 9C; Step capacity = 20HP **Compr. 2:** 1 steps: DOC4 = 11C; Step capacity = 15HP **Compr. 3:** 2 step: DOC5 = 15C; DOC6 = 16C Step capacity = 50HP

Activation sequence

Start with Compressor1, SL1-2 of Compressor 2 expired before step 3

9.3 Inverter + mixed capacity compressors

The algorithm to manage inverter plus mixed capacity compressors is similar to the algorithm used for the inverter + on/off compressors:

9.3.1 Increasing capacity

- 1. The inverter will reach the his max capacity,
- If the controller requires additional capacity the step of mixed compressors with bigger capacity than the running one is activated.

9.3.2 Decreasing capacity

- 1. The inverter will reach the his minimum capacity,
- If the controller requires less capacity the step of mixed compressors with lower capacity than the running one is activated.

9.4 Uneven capacity for parallel compressor

CF35 Kind of paralle compressors

To set the kind of compressors.

Range: 0÷1

0: 1:

- SPo = compressors with the same capacity
- dPO = mixed capacities

CF36- CF41 40 Power of parallel compressor 1-6 5

For setting the capacity of single compressor (insert in each parameter the capacity of the compressor used).

E.I. 3 compressors with following capacity: 10, 20, 40 KW. The parameters have to be set in this way: CF36=10, C37=20, CF38=40

Range: 0÷100; 0 = not used

UM: KW

10 ANALOG OUTPUTS FOR INVERTER

10.1 VSD Compressor management

The analog output can be used in a rack with VSD compressor, driven by an inverter. The regulation of the compressors in this case is changed as described in the following graph: The following examples show the behaviour of the analog Output with proportional regulation.

EX. 2 compressors, 1 frequency compressor.

IO_configuration:

DOC1 = 1 DOC2 = 7 DOC3 = 11	 Inverter 1 Suction Circuit 1" Compressor 1 Circuit 1" Compressor 1 Circuit 2"
AOC1 = 2	" 0-10V Output inverter 1 Suction Circuit 1

Parameters:

CF18 = db AO1 6 < 100

AO1 5 < 100

RC1 = AO1_17: same value for proportional band of inverter regulataion and neutral zone for fix compressor activation and de-activation

AO1_16 Analog Output 1 decreasing time from 100% to the AO1_4 value AO1_17 Proprotional band for inverter regulation

EX: 2 compressors, 1 frequency compressor.

IO_configuration:

DOC1 = 1	" Inverter 1 Suction Circuit 1"
DOC2 = 7	" Compressor 1 Circuit 1"
DOC3 = 11	" Compressor 1 Circuit 2"
AOC1 = 2	" 0-10V Output inverter 1 Suction Circuit 1

Parameters:

 $\begin{array}{l} CF18 = db \\ AO1_6 = 100 \ Analog \ Output 1 \ value \ after \ a \ compressor \ is \ switched \ off \\ AO1_5 = 100 \ Analog \ Output 1 \ value \ after \ compressor \ start \end{array}$

Where:

B→	RC1 Regulation band	
MIN →	AO1_4 Minimum value for analog out.1	0 ÷ 99 %
T1 →	AO1_10 Regulation delay after entering the regulation band	0 ÷ 255 (sec)
Т3 →	AO1_12 Analog Output 1 permanency at 100% before load activation	0 ÷ 255 (sec)
	Delay between pressure (temperature) goes down the set point and start of	0 ÷ 255 (sec)
	analog Output 1 decreasing	
T4 →	SL3 2 different loads start delay	1 ÷ 5990 sec
T6 →	SL4 2 different loads off delay	1 ÷ 5990 sec

10.2 Double inverter management for CF1 = SPo

10.2.1 Regulation with 2 inverter compressors

This paragraph describes the resources and the regulation with 2 inverters for circuit 1, the same rules will be applied to circuit 2 and parallel compressors.

Only the Analog outputs on the ipro, can be used to drive inverters.

iProRACK 10 DIN will managed at max 6 inverters among: suction 1, 2 parallel compressors and condenser. iProRACK 4 DIN will managed at max 4 inverters among: suction 1, 2 parallel compressors and condenser.

Note: For the circuit2, iProRACK supports the double inverter compressor when CF33=Spo. For the parallel compressor, iProRACK supports the double inverter compressor when CF35=Spo. 1 single inverter compressor I forced ON in circuit 1 case the booster functionality is active.

10.2.2 <u>Resources</u>

Digital outputs

DOCxx	MEANING	Mandatory
1	Inverter compressor 1 Suction Circuit 1	Yes
2	Inverter compressor 2 Suction Circuit 1	Yes
7	Compressor 1 Circuit 1	No
	Additional compressors or steps	No

Digital intputs

DICxx	MEANING	Mandatory	
	Thermal protection Inverter 1 C1 Oil pressure switich Inverter 1 C1 Pressure switch Inverter 1 C1	no	
	protection Inverter 2 C1 Oil pressure switich Inverter 2 C1 Pressure switch Inverter 2 C1	No	
	Additional safeties of compressors	No	

Analog outputs

AOCxx	MEANING	Mandatory	
TAB A: 2 or	Output inverter 1 Suction Circuit 1	Yes	
12			
TAB B: 2			
TAB A: 5 or	Output inverter 2 Suction Circuit 1	Yes	
14			
TAB B: 3			

10.2.3 Parameters involved

ANALOG OUTPUT

For regulation ONLY the parameters related to the analog output of the first inverter will be used. E.I. :

AOC1 = 2, Output inverter 1 Suction Circuit 1

AOC2 = 5, Output inverter 2 Suction Circuit 1

During the regulation only the parameters of the analog output number one (AO1_1...AO1_26) will be used.

The controller shares the running hours among the 2 inverters.

Regulation concept

The VSD compressor with less running hours E.I. inverter 1, is started and if additional capacity is required, the second inverter will be started.

Once started, both inverters modulate with the same capacity.

This means that the A.O. of the inverter 2 is the copy of the analog output of the inverter 1: AO2 = AO1.

NOTE: The parameters related to Inverter 1 are used for for the regulation of the analog output, independently from which inverter is running.

E.I: if analog output for inverter 1 is AO1, the parameters of the first analog output AO1_1... AO1_25 will be used for the regulation and the analog output of the inverter 2 will be the copy of A.O. of inverter 1.

INCREASING CAPACITY

If additional capacity is required and other compressors are available, both the VSD compressors go to AOx_5 speed before starting addional on/off compressors.

DECREASING CAPACITY

If less capacity is required, after reducing the VSD speed an on/off compressor is switched off.

If only the 2 inverters are running and less capacity is required one of them is switched.

The remaining VSD compressor modulates if the pressure is inside regulation band OR also the last inverter is switched off.

E.I.: 2 VSD compressors, 1 ON/OFF compressors.

IO_configuration:

DOC1 = 1 "Inverter 1 Suction Circuit 1" DOC2 = 2 "Inverter 2 Suction Circuit 1" DOC3 = 7 "Compressor 2 Circuit 1"

AOC1 = 2 "0-10V Output inverter 1 Suction Circuit 1 " AOC2 = 5 "0-10V Output inverter 2 Suction Circuit 1 "

Parameters:

CF18 = db AO1_6 < 100 AO1_5 < 100 AO1_13 < 100 RC1 = AO1_17

The following examples shows the behaviour of the analog Output with proportional regulation. It's considered Inverter 1 has run less hours than 2 when is started, more hours than 2 when is switched off.

where:

- TRHESHOLD

- AO1_4 Minimum value for analogue Output 1
 AO1_5 Analog Output 1 value BEFORE compressor start
 AO1_6 Analog Output 1 value WHEN a compressor switch off
- AO1 13 Max value analog output

TIMERS

- AO1 10 Regulation delay after entering the regulation band
- A01_11 Analog Output 1 rise time from AO1_4 to AO1_13 when the pressure is above the regulation band and a load is switched on.
- A01_12 Analog Output 1 permanency at AO1_13 before load activation
- AO1_14 Analog Output 1 decreasing time from AO1_13 to the AO1_4 value
- A01_15 Analog Output1 permanency at AO1_4 before a load is switched off
- AO1_16 Analog Output1 decreasing time, from AO1_13 to AO1_5 when a load is switched on

PID

- A01_17 Proportional band
- AO1_18 Integral time
- AO1 19 Band offset

10.3 Inverter by-pass

The inverter by pass function is used as back up function, in a circuit with compressor invert, allowing the compressor with inverter to run at fixed speed when an issue occurs to the inverter.

10.3.1 Parameter involved

PARAMETER	VALUES		
DIC1 ÷ DIC43	1150 Oil of compressor with Inverter suction Circuit 1		
	115c Oil of compressor with Inverter suction Circuit 1		
	1160 Safety of Compressor with Inverter Suction Circuit 1		
	116c Safety of Compressor with Inverter Suction Circuit 1		
	1170 Thermal Safety of Compressor with Inverter suction Circuit 1		
	117c Thermal Safety of Compressor with Inverter suction Circuit 1		
	118o Oil of compressor with Inverter suction Circuit 2		
	118c Oil of compressor with Inverter suction Circuit 2		
	119o Safety of Compressor with Inverter Suction Circuit 2		
	119c Safety of Compressor with Inverter Suction Circuit 2		
	1200 Thermal Safety of Compressor with Inverter suction Circuit 2		
	120c Thermal Safety of Compressor with Inverter suction Circuit 2		
	1380 Inverter suction 1 safety		
	138c Inverter suction 1 safety		
	1390 Inverter suction 2 safety		
	139c Inverter suction 2 safety		
DOC1 ÷DOC36	10 Inverter 1 Suction Circuit 1		
	1c Inverter 1 Suction Circuit 1		
	30 Inverter 1 Suction Circuit 2		
	3C Inverter 1 Suction Circuit 2		
	1080 Inverter suction 1 by-pass		
	108c Inverter suction 1 by pass		
	1090 Inverter suction 2 by-pass		
	109c Inverter suction 2 by-pass		
AOC 1 ÷ AOC 6	2 0-10V output inverter 1 Suction Circuit 1		
	4 0-10V output inverter 1 Suction Circuit 2		
	11 4-20mA output inverter 1 Suction Circuit 1		
	13 4-20mA output inverter 1 Suction Circuit 2		

10.3.2 Function

Circuit 1:

When the digital input set as 138: Inverter suction 1 safety is turned on, the following action are taken:

- 1. The digital output DOC(i) set as "1": Inverter 1 Suction Circuit 1" is turned off.
- 2. The analog output AOC(i) set as "2 or 11: inverter 1 Suction Circuit 1" is set to 0V or 4mA
- The digital output DOC(i) set as "109" : Inverter suction 1 by-pass is used as a compressor in the suction regulation. In this case, the band for regulation is AOx_17.
- 4. The alarm signaling is activated (see table)
- 5. The digital inputs set as "safety of the suction inverter of Circuit 1: 115, 116, 117" are referred to the DOC(i) set as 109

Circuit 2:

When the digital input set as 139: Inverter suction 2 safety is turned on, the following action are taken:

- 1. The digital output DOC(i) set as "3": Inverter 1 Suction Circuit 2" is turned off.
- 2. The analog output AOC(i) set as "4 or 13: inverter 1 Suction Circuit 2" is set to 0V or 4mA
- The digital output DOC(i) set as "110" : Inverter suction 2 by-pass is used as a compressor in the suction regulation. In this case, the band for regulation is AOx_17.
- 4. The alarm signaling is activated
- 5. The digital inputs set as "safety of the suction inverter of Circuit 2: 118, 119, 120 " are referred to the DOC(i) set as 110

10.4 Fans management with inverter– 1 fans group with inverter mode, others ON in on/off mode

With this configuration, one analog Output can be used to drive the inverter (AO1=6 "0-10V Output inverter condenser Circuit 1"). Set one relays as inverter condenser (DO1=5 "Inverter condenser Circuit 1"), and other relays as fans (DO1=55 "Fan1 Circuit 1").

EX: 3 fans, 1 with inverter. Analog Output 1 drives the inverter

IO_configuration:

DOC1 = 5	" Inverter Condenser Circuit 1"
DOC2 = 67	" Fan 1 Circuit 1"
DOC3 = 68	" Fan 2 Circuit 1"

AOC1 = 6 "0-10V Output inverter condenser Circuit 1 "

Parameters:

AO1_6 = 100 AO1_5 = 0

- MIN -> AO1 4 Minimum value for analog Output 1
- T1 → AO1_10 Regulation delay of analog Output 1 when the pressure is in the regulation band
- $T2 \rightarrow$ A01_11 Analog Output 1 rise time from AO1_4 to 100% when the pressure is outside the regulation band
- τ3 → AO1_12 Analog Output 1 permanency at AO1_13 (max) before load activation
- T4 → SL3 2 different loads start delay
- T5 → A01_15 Analog Output 1 permanency at AO1_4 before a load is switched off
- T6→ SL4 Time delay between switching off of two different compressors - circuit 1

10.5 Management of all fans with inverter – proportional inverter

In this case all fans of the condensing group are driven by one inverter. The power used by the inverter is proportional to the delivery temperature/pressure value.

IO configuration:

Set one relay as inverter free and set one analog Output to drive it. **DOCxx** = 103 " Inverter free circuit 1 ", where DOCxx is one of the relay output.

AOC1 = 8 "Output inverter condenser free Circuit 1"

AICxx = 3 "NTC Temperature probe Condenser Circuit1" is the reference probe

The analog ouput is managed in proportional mode according to the temperature between the SETF1 and the SETF1 + AO1_17.

Below the SETF1 the output is OFF, above the SETF1 + AO1_17the analog output works at AO1_13.

If the delivery temperature/pressure is higher than the SETF1+ (A01_17*A01_4)/100 value, the relay set as inverter is ON; if the delivery temperature/pressure is lower than the SETF1 value the relay is OFF.

10.5.1 Use of fans thermal protection

With this configuration it is possible to use Ipro digital Inputs to monitor the fans functioning. It is necessary to set as much relay as used fans. Connect the thermal protection of every fans to its digital Input of the relay set as fan.

DON'T USE relays set as fans.

IO_configuration: 5 fans, driven by one inverter, and 5 digital inputs for fan thermal protection.

DOC1 = 103	" Inverter free circuit 1 ";	DOC2 = 67	" Fan 1 Circuit 1"
DOC3 = 68	" Fan 2 Circuit 1"	DOC4 = 69	" Fan 3 Circuit 1"
DOC5 = 70	" Fan 4 Circuit 1"		
DIC1 = 121 S	afety Inverter condenser Circ	uit 1 C	0IC2 = 73 "Fan safety1 – Circuit 1"
DIC3 = 74 "Fa	n safety2 – Circuit 1"	C	0IC4 = 75 "Fan safety3 – Circuit 1"
DIC5 = 76 "Fa	n safety4 – Circuit 1"		

10.5.2 Anti-stuck function for fans driven by analog output

This function is used to avoid fan stuck in low temperature conditions. The algorithm works in this way: when the fans are driven by inverter (AOCxx = 6 or 7 or 8 or 9 or 15 or 16 or 17 or 18), if they remain off for a long time (parameter AOxx_25), they are forced to run (max speed) for short period (AOCxx_26), to avoid fans stuck because of ice.

10.6 FAN PRE-START BEFORE FIRST COMPRESSOR ACTIVATION

This function (**SL24**) is used when the compressor has to start, while the fan is off. In this situation, first the fan is switched on, then after GC110 seconds the compressor is started. After compressor start, the fan remains on at least for 15s. If after 15s the pressure is below the fan set point, the fan is allowed to stop.

NOTE: in case of fan driven by analog output, the fan remains to the min value till a higher value is requested. If we only have normal fan in the regulation, switch on single one fan. If after 15s the pressure is below the fan set point, the fan is switched off.

Note: If both HPV pre-set and fan pre-start at first compressor activation are enabled, and GC109 is not equal to GC110, the compressor can be started after the longer timer.

11 FLASH TANK: LOW AND HIGH LIQUID LEVEL MANAGEMENT

MANAGEMENT OF LOW AND HIGH LIQUID LEVEL ALARM IN FLASH TANK WITH DIGITAL INPUTS

11.1.1 Resources

DICxx	MEANING	LEVEL
109	Low flash tank liquid level	Mandatory to have Low liquid level alarm by d.i. in circuit 1
	Circuit 1	or flash tank
110	Low Liquid level Circuit 2	Mandatory to have Low liquid level alarm by d.i. in circuit 2
226	High flash tank liquid level	Mandatory to have high liquid level alarm by d.i. in circuit 1
	Circuit 1	or flash tank

11.1.2 Parameters involved

CDI1	Delay of Low liquid level in flash tank Circuit 1	
CDI2	Delay of low Liquid level digital Input - Circuit 2	
CDI3	Relay activated in case of flash tank liquid level alarm – Circuit 1	
CDI4	Relay activated in case of liquid level alarm – Circuit 2	
AL51	LT, MT and Parallel compressors shut down in case of High liquid level	No – yes
	alarm in flash tank.	
AL52	High flash tank liquid level alarm delay	

11.1.1 Adjustment Circuit1

Low liquid level in Circuit 1 (LL1)

With DICxx = 109 activated, after the CDI1 the controller signals the Low liquid level in flash tank, Circuit 1 (LL1), compressors keep on working

High liquid level in Circuit 1 (HLIQ)

With DICxx = 226 activated, after the AL52 the controller signals the High liquid level in flash tank Circuit 1 (HLIQ)

the status of compressors of LT (circuit 2), MT (circuit 1) and Parallel depends on parameter AL51

- With AL51 = No : compressors keep on working
- With AL51 = Yes : compressors are stopped (1 compressor every second)

11.1.2 Adjustment Circuit2

Low liquid level in Circuit 2 (LL2)

With DICxx = 110 activated, after the CDI2 the controller signals the Low **liquid level Circuit 1**, compressors keep on working

12 Analog ouput for fan management at reverse mode

It's possible to reverse the functionality of the analog outputs, when they are set to manage the condenser fan. This means, for instance, that with a 0-10V out, with 0 V the fan will runa at the max speed, while with 10V they will be stopped.

12.1 Resources

AOCx=

6	0-10V output inverter condenser Circuit 1
7	0-10V output inverter condenser Circuit 2
8	0-10V output inverter condenser free Circuit 1
9	0-10V output inverter condenser free Circuit 2
15	4-20mA output inverter condenser Circuit 1
16	4-20mA output inverter condenser Circuit
17	4-20mA output inverter condenser free Circuit 1
18	4-20mA output inverter condenser free Circuit 2

12.2 Parameters

Fan condenser works in reverse mode, with RC31 = 1 and RC32 = 1

RC31 Inverter Fan circuit1 management mode. Range: 0÷1 0=Direct mode

1=Reverse mode

RC32 Inverter Fan circuit2 management mode. Range: 0÷1 0=Direct mode 1=Reverse mode

13 HOT GAS INJECTION VALVE MANAGEMENT

The hot gas valve for circuit 1 (DOCxx = 105 "Hot gas injection valve circuit 1") can be activated, by: - SH control (see next paragraph); - Suction temperature control, if it is enabled (ASH17 = YES), as described in the next paragraph.

The hot gas valve for circuit 2 (DOCxx = 106 "Hot gas injection valve circuit 2") can be activated, by:

- SH control (see next paragraph);
- Suction temperature control, if it is enabled (ASH20 = YES), as described in the next paragraph.

NOTE:

As there are 2 ways to active the hot gas injection valve:

If one of above way needs to turn on the hot gas injection valve, the other way does not need to turn on the hot gas injection valve, the valve will be turned on.

The valve can be turned off only in the condition that both of the above 2 ways need to turn off the valve.

13.1 Activation to increase superheat with low superheat conditions

The SH of the circuit 1 (circuit 2) is calculated ONLY if at least one compressor of the circuit 1 (circuit 2) is running, since a minute

13.1.1 PARAMETERS INVOLVED

LABEL	MEANING	RANGE
ASH7	Superheat value 1 at which to enable valve 1 for injecting hot gas (hot action)	0.1 to 15.0°C/ 1 to 30°F
ASH8	Differential for ASH7	0.1 to 15.0°C/ 1 to 30°
ASH14	Superheat value 2 at which to enable valve 2 for injecting hot gas (hot action)	0.1 to 15.0°C/ 1 to 30°F
ASH15	Differential for ASH14	0.1 to 15.0°C/ 1 to 30°F

13.1.2 Configuration

IO_configuration circuit 1:

1) relay as injection valve: DOCxx = 105 "Hot gas injection valve circuit 1"

2) auxiliary probe for calculating superheat: Alxx = 17 "NTC AUX Temperature probe suction circ.1"

IO_configuration circuit 2:

 relay as injection valve: DOCxx = 106 "Hot gas injection valve circuit 2"

2) auxiliary probe for calculating superheat: Alxx = 18 "NTC AUX Temperature probe suction circ.2"

13.1.3 Adjustment

Circuit 1

The relay configured as Valv1 works as a thermostat with inverse action (hot), using the superheat value as the control variable.

SH1 = ("NTC AUX Temperature probe suction circ.1") – ("Probe Suction Circuit1")

<u>Note</u>: "Probe Suction Circuit1" can be AICxx = 1 or 19 or 37 (in this case it has to be converted in temperature) or 41 (in this case it has to be converted in temperature)

if SH1 ≤ ASH7 – ASH8		\rightarrow	relay configured as DOC 105 on
if SH1≥ ASH7		\rightarrow	relay configured as DOC 105 off
if ASH7 – ASH8 < SH1 < ASH7	\rightarrow	maintains	the previous status (it the relay was on, it stays in on;
if it was in off, it stays in off).			

Circuit 2

The relay configured as Valv2 works as a thermostat with inverse action (hot), using the superheat value as the control variable.

SH12= ("NTC AUX Temperature probe suction circ.2") - ("Probe Suction Circuit2")

<u>Note</u>: "Probe Suction Circuit2" can be AICxx = 2 or 20 or 38 (in this case it has to be converted in temperature) or 42 (in this case it has to be converted in temperature)

if SH2 ≤ ASH14 – ASH15	\rightarrow	relay configured as DOC 106 on
if SH2≥ ASH14	\rightarrow	relay configured as DOC 106 off
if ASH14 – ASH15 < SH2 < ASH14	\rightarrow	maintains the previous status (it the relay was on, it
stays in on; if it was in off, it stays in off).		

13.1.4 Special cases

- a. If no aux probe is configured for calculating the SH1 (SH2) and a relay is set as DOCxx = 105 (106), this relay will never be enabled.
- b. If the AUX probe configured for calculating the SH1 (SH2) is in error mode, the probe alarm is generated and the relay set as DOCxx = 105 (106) is not enabled.

13.2 Activation to increase suction temperature when it is too low

13.2.1 PARAMETERS INVOLVED

LABEL	MEANING	RANGE
ASH17	Hot gas valve circuit 1 activated also by temperature control	(no, yes)
ASH18	Suction 1 temperature value at which the hot gas valve is enabled (hot action)	(-50÷110°C/ -58 to 230°F)
ASH19	Differential for ASH18	(0.1 to 15.0°C/ 1 to 30°F)
ASH20	Hot gas valve circuit 2 activated also by temperature control	(no, yes)
ASH21	Suction 2 temperature value, at which the hot gas valve is enabled (hot action)	(-50÷110°C/ -58 to 230°F)
ASH22	Differential for ASH21	(0.1 to 15.0°C/ 1 to 30°F)

13.2.2 Configuration

IO_configuration circuit 1:

1) relay as hot gas injection valve: DOCxx = 105 "Hot gas injection valve circuit 1"

2) The temperature control is enabled (ASH17=YES)

3) At least one tempearature probe, among the following, is set as auxiliary probe, mounted on the

suction line:

Alxx = 17	"NTC AUX Temperature probe suction circ.1" or
Alxx = 45	"NTC Suction Temperature Compressor 1 Circuit 1" or
 Alxx = 56	"NTC Suction Temperature Compressor 12 Circuit 1"

IO_configuration circuit 2:

 relay as hot gas injection valve: DOCxx = 106 "Hot gas injection valve circuit 2" 2) The temperature control is enabled (ASH20=YES)

3) At least one tempearature probe, among the following, is set as auxiliary probe, mounted on the suction line:

AIxx = 18	"NTC AUX Temperature probe suction circ. 2" or "NTC Suction Temperature Compressors 1 Circuit 2" or
AIXX = 57	NTC Suction Temperature Compressor T Circuit 2 of
AIxx = 68	"NTC Suction Temperature Compressor 12 Circuit 2"

13.2.3 Adjustment

Circuit 1

The relay configured as hot gas injection valve circuit 1 (DOCxx = 105) works as a thermostat with inverse action (hot), using the temperature values coming from the probe sets as Alxx = 17, 45, 46, ..., 56, respecting the following conditions:

If at least one of the probes set as Alxx = 17, 45, 46,, 56 ≤ ASH18 – ASH19	\rightarrow	relay
configured as DOC 105 on		
If ALL the probes Alxx = 17, 45, 46,, 56 ≥ ASH18	\rightarrow	relay
configured as DOC 105 off		-
Else		\rightarrow
maintains the status.		

Circuit 2

The relay configured as hot gas injection valve circuit 2 (DOCxx = 106) works as a thermostat with inverse action (hot), using the temperature values coming from the probe sets as Alxx = 18, 57, 58, ..., 68, respecting the following conditions:

If at least one of the probes set as Alxx = 18, 57, 58,, 68 ≤ ASH21 – ASH22	\rightarrow	relay
configured as DOC 106 on		-
If ALL the probes Alxx = 18, 57, 58,, 68 ≥ ASH21	\rightarrow	relay
configured as DOC 106 off		-
Else		\rightarrow
maintains the status.		

13.2.4 Particular cases

- a. If no probes are configured as Alxx = 17, 45, 46, ..., 56 (Alxx = 18, 57, 58, ..., 68) to detect the suction temperature and a relay is set as "Hot gas injection valve circuit 1" ("Hot gas injection valve circuit 2"), the "Hot gas injection valve circuit 1" ("Hot gas injection valve circuit 2") relay will never be enabled.
- b. If all the probes configured as Alxx = 17, 45, 46, ..., 56 (Alxx = 18, 57, 58, ..., 68) are in error mode, the probe alarm is generated and the "Hot gas injection valve circuit 1" ("Hot gas injection valve circuit 2") relay is not enabled.

14 LIQUID INJECTION VALVE MANAGEMENT

The liquid injection valve DOCxx = 123 "Liquid injection valve circuit 1" (DOCxx = 124 "Liquid injection valve circuit 2") can be activated in the following cases:

- To decrease SH, when it's too high,
 - To decrease suction temperature.
- To decrease compressor discharge temperature

NOTE:

As there are 3 ways to active the liquid injection valve:

If one of above way needs to turn on the liquid injection valve, and the other ways do not need to turn on the liquid injection valve, the valve will be turned on,

The valve will be turned off only in condition that all of the 3 ways need to turn off the valve.

14.1 Activation to decrease superheat with high superheat conditions

Preliminary consideration:

The 2 below conditions have to be satisfied before starting the SH check and control

a. The SH of the circuit 1 (circuit 2) is calculated ONLY if at least one compressor of the circuit 1 (circuit 2) is running,

b. The SH control starts 1 minute after the start of the first compressor of the circuit 1 (circuit 2).

14.1.1 PARAMETERS INVOLVED

LABEL	MEANING	RANGE
ASH26	Liquid injection valve circuit 1 activated also by SH control	no, yes
ASH27	High Superheat value of circuit 1 to enable liquid injection (cooling action)	1 to 100°C/ 1 to 180°F
ASH28	Differential for ASH27	0.1 to 15.0°C/ 1 to 30°F
ASH29	Liquid injection valve circuit 2 activated also by SH	no, yes
ASH30	High Superheat value of circuit 2 to enable liquid injection (cooling action)	1 to 100°C/ 1 to 180°F
ASH31	Differential for ASH30	0.1 to 15.0°C/ 1 to 30°F
ASH39	On time for liquid injection valve circuit 1	3-500s
ASH40	Off time for liquid injection valve circuit 1	0-500s
ASH41	On time for liquid injection valve circuit 2	3-500s
ASH42	Off time for liquid injection valve circuit 2	0-500s

14.1.2 Configuration

IO_configuration circuit 1:

1) digital output set as liquid injection valve: DOCxx =123 "Liquid injection valve Circuit 1"

2) auxiliary probe for calculating superheat: Alxx = 17 "NTC AUX Temperature probe suction circ.1"

IO_configuration circuit 2:

1) digital output set as liquid injection valve: DOCxx =124 "Liquid injection valve Circuit 2"

2) auxiliary probe for calculating superheat: Alxx = 18 "NTC AUX Temperature probe suction circ.2"

14.1.3 Adjustment

Circuit 1

The relay configured DOCxx =123 works as a thermostat, with cooling action, using the superheat value as the control variable.

SH1 = ("NTC AUX Temperature probe suction circ.1") – ("Probe Suction Circuit1")

Note: "Probe Suction Circuit1" can be AICxx = 1 or 19 or 37 (in this case it has to be converted in temperature) or 41 (in this case it has to be converted in temperature)

if SH1≥ ASH24 + ASH25	\rightarrow	relay configured as DOC 123 or Analog outp
		AOCxx set as: TAB A: 47 or 49 or TAB B: 24 or TA

C: 25 or 27 or TAB D: 13 cycling according to ASH39 and ASH40. **NOTE:** With ASH40 = 0, relay or analog output is always on independently from value of ASH39

if SH1 \leq ASH24 if ASH24 < SH1 < ASH24+ASH25 stays in on; if it was in off, it stays in off) relay configured as DOC 123 or analog output off maintains the previous status (it the relay was on, it

Circuit 1

The relay configured DOCxx =124 works as a thermostat, with cooling action, using the superheat value as the control variable.

SH2 = ("NTC AUX Temperature probe suction circ.2") – ("Probe Suction Circuit2")

 \rightarrow

÷

<u>Note</u>: "Probe Suction Circuit2" can be AICxx = 2 or 20 or 38 (in this case it has to be converted in temperature) or 42 (in this case it has to be converted in temperature)

if SH2≥ ASH30 + ASH31	<i>→</i>	relay configured as DOC 124 or Analog output AOCxx set as: TAB A: 48 or 50 or TAB B: 25 or TAB C: 26 or 28 or TAB D: 14: cycling according to ASH41 and ASH42.
if SH2 ≤ ASH30	÷	NOTE: With ASH42 = 0, relay or analog output is always on independently from value of ASH41 relay configured as DOC 124 or analog output is off
if ASH30 < SH2 < ASH30+ASH31	\rightarrow	maintains the previous status

14.1.4 Particular cases

- If no aux probe is configured for calculating the SH1 (SH2) and a relay is set as DOCxx=123 "Liquid injection valve Circuit 1" (DOCxx=124 "Liquid injection valve Circuit 2"), the valve relay will never be enabled.
- b. If the AUX probe configured for calculating the SH1 (SH2) is in error mode, the probe alarm is generated and the relay DOCxx=123 (DOCxx=124) is not enabled.

14.2 Activation to decrease suction temperature when it is too high

Preliminary consideration:

The 2 below conditions have to be satisfied before starting the SH check and control

- a. The temperature of the circuit 1 (circuit 2) is monitored ONLY if at least one compressor of the circuit 1 (circuit 2) is running,
- The temperature control starts after ASH30 minuts after the start of the first compressor of the circuit 1 (circuit 2).

LABEL	MEANING	RANGE
ASH32	Liquid injection valve, circuit 1, activated also by temperature	no, yes
	control	
ASH33	Delay after compressor start, before initiating the suction temperature control: This delay is used both for circuit 1 and circuit 2	0÷15min
ASH34	Suction 1 temperature value at which the liquid injection valve is enabled (cooling action)	-50÷110°C/ -58 to 230°F
ASH35	Differential for ASH34	0.1 to 15.0°C/ 1 to 30°F
ASH36	Liquid injection valve, circuit 2, activated also by temperature	no, yes
	control no, yes	

14.2.1 PARAMETERS INVOLVED

ASH37	Suction 2 temperature value at which the liquid injection valve is enabled (cooling action)	-50÷110°C/ 230°F	-58	to
ASH38	Differential for ASH37	0.1 to 15.0°C	/ 1 to 3	0°F

14.2.2 Configuration

IO_configuration circuit 1:

1) relay set as liquid injection valve: DOCxx = 123 "Liquid injection valve circuit 1" or Analog output AOCxx set as: TAB A: 47 or 49 or TAB B: 24 or TAB C: 25 or 27 or TAB D: 13

2) The temperature control is enabled (ASH29=YES)

3) At least one tempearature probe, among the following, is set as auxiliary probe, mounted on the suction line :

AIxx = 17	"NTC AUX Temperature probe suction circ.1" or
AIxx = 45	"NTC Suction Temperature Compressor 1 Circuit 1" or
 Alxx = 56	"NTC Suction Temperature Compressor 12 Circuit 1"

IO_configuration circuit 2:

 relay set as liquid injection valve: DOCxx = 124 "Liquid injection valve circuit 2"

2) The temperature control is enabled (ASH33=YES)

3) At least one tempearature probe, among the following, is set as auxiliary probe, mounted on the suction line :

Alxx = 18	"NTC AUX Temperature probe suction circ. 2" or
Alxx = 57	"NTC Suction Temperature Compressor 1 Circuit 2" or
 Alxx = 68	"NTC Suction Temperature Compressor 12 Circuit 2"

14.2.3 Adjustment

Circuit 1

The relay configured as DOCxx = 123 "Liquid injection valve circuit 1" works as a thermostat with direct action (cooling), using the temperature values coming from the probe sets as AIxx = 17, 45, 46, ..., 56, respecting the following conditions:

If at least one of the probes set as Alxx = 17, 45, 46,, 56 ≥ ASH31 + ASH32	\rightarrow	relay
configured as DOC 123 on		
If ALL the probes Alxx = 17, 45, 46,, 56 ≤ ASH31	\rightarrow	relay
configured as DOC 123 off		
Else		\rightarrow
maintains the status.		

Circuit 2

The relay configured as DOCxx = 124 "Liquid injection valve circuit 2" works as a thermostat with direct action (cooling), using the temperature values coming from the probe sets as Alxx = 18, 57, 58, ..., 68, respecting the following conditions:

If at least one of the probes set as Alxx = 18, 57, 58,, 68 ≥ ASH34 + ASH35	\rightarrow	relay
configured as DOC 124 on		
If ALL the probes Alxx = 18, 57, 58,, 68 ≤ ASH34	\rightarrow	relay
configured as DOC 124 off		

Else

maintains the status.

14.2.4 Special cases

- a. If no probes are configured as Alxx = 17, 45, 46, ..., 56 (Alxx = 18, 57, 58, ..., 68) to detect the suction temperature and a relay is set as "Liquid injection valve circuit 1" ("Liquid injection valve circuit 2"), the "Liquid injection valve circuit 1" ("Liquid injection valve circuit 2") relay will never be enabled.
- b. If all the probes configured as Alxx = 17, 45, 46, ..., 56 (Alxx = 18, 57, 58, ..., 68) are in error mode, the probe alarm is generated and the "Liquid injection valve circuit 1" ("Liquid injection valve circuit 2") relay is not enabled.

14.3 Activation to decrease discharge temperature when it is too high

Preliminary consideration:

The 2 below conditions have to be satisfied before starting the temperature check and control

- c. The temperature of a circuit is monitored ONLY if at least one compressor of the circuit itself is running,
- d. The temperature control starts after 1 minute after the start of the first compressor of the circuit.

14.3.1 PARAMETERS INVOLVED

LABEL	MEANING	RANGE
DSC1	Circuit 1, Liquid injection valve activated also by discharge	no, yes
	temperature	
DSC2	Circuit 1, discharge temperature threshold to activate the liquid	0 to 150°C; 32 to
	injection valve	302°F
DSC3	Circuit 1, Differential for DSC2 and DSC4	0.1 to 15.0°C/ 1 to
		30°F
DSC4	Circuit 1, High discharge temperature alarm, circuit 1	0 to 150°C; 32 to
		302°F
DSC5	Circuit 1, High discharge temperature alarm delay	0 to 60min
DSC6	Circuit 1, Delay before stopping compressors, with High discharge	0 to 255min
	temperature alarm:	
DSC7	Circuit 1, Interval between 2 compressors turning off in case of high	0 to 255s
	discharge temperature alarm:	
DSC8	Circuit 2, Liquid injection valve activated also discharge temperature	no, yes
DSC9	Circuit 2, discharge temperature threshold to activate the liquid	0 to 150°C; 32 to
	injection valve	302°F
DSC10	Circuit 2, Differential for DSC9	0.1 to 15.0°C/ 1 to
		30°F
DSC11	Circuit 2, High discharge temperature alarm	0 to 150°C; 32 to
		302°F
DSC12	Circuit 2, High discharge temperature alarm delay	0 to 60min
DSC13	Circuit 2, Delay before stopping compressors, with high discharge	0 to 255min
	temperature alarm	
DSC14	Circuit 2, Interval between 2 compressors turning off in case of high	0 to 255s
	discharge temperature alarm	

14.3.2 Configuration

IO_configuration circuit 1:

1) relay set as liquid injection valve:

DOCxx = 123 "Liquid injection valve circuit 1"

2) The temperature control is enabled (DSC1=YES)

3) At least one tempearature probe, among the following ones, is set as discharge temperature probe, mounted on the discharge line:

Alxx = 156	"NTC Discharge Temperature line Circuit 1"
Alxx = 158	"PTC Discharge Temperature line Circuit 1"
AIxx = 69	"PTC Discharge Temperature Compressor 1 Circuit 1" or
AIxx = 70	"PTC Discharge Temperature Compressor 2 Circuit 1" or
AIxx = 80	"PTC Discharge Temperature Compressor 12 Circuit 1"

IO_configuration circuit 2:

1) relay set as liquid injection valve:

DOCxx = 124 "Liquid injection valve circuit 2"

2) The temperature control is enabled (DSC8=YES)

3) At least one tempearature probe, among the following ones, is set as discharge temperature probe, mounted on the discharge line:

Alxx = 157	"NTC Discharge Temperature line Circuit 2"
Alxx = 159	"PTC Discharge Temperature line Circuit 2"
AIxx = 81	"PTC Discharge Temperature Compressor 1 Circuit 2" or
AIxx = 82	"PTC Discharge Temperature Compressor 2 Circuit 2" or
Alxx = 92	"PTC Discharge Temperature Compressor 12 Circuit 2"

14.3.3 Adjustment

Circuit 1

The relay configured as liquid injection valve, (DOCxx = 123) works as a thermostat with direct action (cooling), using of the temperature values coming from the probe sets as Alxx = 156, 158, 69, 70, ..., 80, respecting the following conditions:

f at least one of the probes set as Alxx = 156, 158, 69, 70,, $80 \ge DSC2 + DSC3$	\rightarrow	relay
f ALL the probes Alxx = 156, 158, 69, 70,, $80 \le DSC2$		\rightarrow
Else		\rightarrow

maintains the status.

Circuit 2

The relay configured as liquid injection valve, (DOCxx = 124) works as a thermostat with direct action (cooling), using of the temperature values coming from the probe sets as Alxx = 157, 159, 81, 82, ..., 92, respecting the following conditions:

If ALL the probes Alxx = 157, 159, 81, 82,, 92 ≤ DSC9 → relay configured as DOC 124 off Else →	If at least of	one of the probes set as Alxx = 157, 159, 81, 82,, 92 ≥ DSC9 + DSC10 as DOC 124 on	\rightarrow	relay
	If ALL the	probes Alxx = 157, 159, 81, 82,, $92 \le DSC9$		\rightarrow
maintains the status	Else			\rightarrow

14.3.4 Special cases

- a. If no probes are configured as Alxx = 156, 158, 69,70, ..., 80 (Alxx = 157, 159, 81, 82, ..., 92) to detect the discharge temperature and a relay is set as "Liquid injection valve circuit 1" ("Liquid injection valve circuit 2"), the "Liquid injection valve circuit 1" ("Liquid injection valve circuit 2") relay will never be enabled.
- b. If all the probes configured as Alxx = 156, 158, 69,70, ..., 80 (Alxx = 157, 159, 81, 82, ..., 92) are in error mode, the probe alarm is generated and the "Liquid injection valve circuit 1" ("Liquid injection valve circuit 2") relay is not enabled.

15 Low Temperature/pressure value to turn off the compressors (electronic low pressure switch).

The AL21 and AL23 parameters determine the low pressure/temperature thresholds for the compressor set of circuit 1 and 2 respectively, for when the pressure/temperature is too low (electronic pressure switch). If the suction pressure of circuit 1 or 2 falls below the value, the low pressure alarm is generated and the compressors can be turned off.

15.1.1 Functionality

The compressors of circuit 1 or 2 are stopped when the set threshold is reached (as if the minimum pressure switch were activated).

The low pressure alarm is generated and the alarm relay set in parameter AL9 is activated.

16 High pressure alarm in gas cooler

This alarm works in parallel with pressure alarm for fan given by the parameter AL25. If the condenser 1 pressure probe reaches the value GC19 and AL27 = YES, the compressors of the circuit 1 (medium temperature), and Circuit 2 (low temperature) and Parallel compressors (if present) are switched off every AL28 sec, while the fans are running at maximum speed.

Alarms recovers when the pressure go below GC19 -5bar (72.5PSI).

17 Flash tank management

17.1 High pressure in flash tank

To avoid high pressure alarm conditions in flash tank, there is a pre-alarm area where HP valve is closed a proportionally to the flash tank pressure.

If the flash tank pressure increseas and raises the high pre-alarm threshold, (GC29), the opeining percentage of HP valve will be updated according to the following chart:

17.2 Low pressure in flash tank

17.2.1 HP and By pass valves management

The controller monitors and manages the pressure inside the flash tank.

If the pressure in the flash tanks decreases and goes below the alarm value (GC31= Flash tank Low pressure setpoint) the by pass valve is closed and the high pressure valve is open at GC36 (HPV % openeing during low pressure safety mode).

Standard operation will be restored as soon as flash tank pressure rises above the GC31+GC32 threshold.

17.2.2 Hot gas injection in flash tank

In addition to the above action, hot gas can be injected in flash tank, by a pass between medium temp discharge line and flash tank.

To do this a relay has to be set as Hot Gas injection valve into Flash tank (DOCxx = 117), and a pressure cut in (GC31 = Flash tank Low pressure setpoint) and cut out (GC31+ GC32) have to be properly set.

The regulation is the following:

If flash tank pressure is less than GC31 the hot gas by-pass valve is energized.

If flash tank pressure is higher than GC31+GC32 the hot gas by-pass valve is de-energized.

When the pressure is between GC31 and GC31+GC32 the hot gas by-pass valve maintains its status.

In case of pressure probe fault, the the function is disabled

17.3 Flash tank liquid level monitoring

17.3.1 Min and max analog liquid level in % and delay

Controller manages the flash tank liquid level and can signal the low or high liquid level warning. With high liquid level condition, compressors can be stopped to allow the liquid to flow through the system.

To manage the liquid level an analot input must be set as liquid level (AICxx = 135: 0-5V), then by the following parameters the Max and min level warnings can be managed:

- AL47 Low Liquid level alarm set point in flash tank
- AL48 High Liquid level alarm set point in flash tank.
- AL49 Delay to signal Low or High Liquid level alarm.
- AL50 Differential for liquid level alarm recovery.
- AL51 LT, MT and Parallel compressors shut down in case of Hlhg Liquid level alarm in flash tank.

18 OFF FUNCTION

18.1 RELATION BETWEEN DIGITAL INPUT AND KEYBOARD

About On/Off function, please refer to the sequence on the next table: The status of DI will affect the ON/Off function, when it is configured as below:

107o ON/OFF Circuit 1 107c ON/OFF Circuit 1 108o ON/OFF Circuit 2

108c ON/OFF Circuit 2

From Visograph, user can also switch the controller on/off by keyboard; it will combine with DI status if configured to control On/Off function.

IPRO-STATUS	DI change status	BUTTON	NEXT IPROSTATUS
OFF	Off	OFF	OFF
OFF	OFF→ON	OFF	ON,
			and also the status of the button is forced to on
OFF	OFF	OFF \rightarrow ON	ON
			TO be switched off again by digital input, the
			following cycle has to be done:

			DI: off→on→off
ON	Off → on	ON	ON
On	On → off	On	Off,
			and also the status of the button is forced to off
On	On	On \rightarrow off	Off
			To be switched on again by digital input, the
			following cycle has to be done:
			DI: on→off→on

In case of power failure, the iProRACK has to resume the status before the power failure. In OFF status, all the loads are switched OFF without waiting any delay and all the analog outputs are zero. Also the iProRACK does not manage any alarm.

18.2 OFF FUNCTION AND GAS COOLER VALVES

If one of the circuit is in "off mode" the HPV and BY-PASS valves have to be closed

19 ENERGY SAVING FUNCTION

19.1 RELATION BETWEEN DIGITAL INPUT AND KEYBOARD

About Energy saving function, please refer to the sequence on the next table: The status of DI will affect the ON/Off function, when it is configured as below:

105o Energy saving Circuit 1 105c Energy saving Circuit 1

1060 Energy saving Circuit 2

106c Energy saving Circuit 2

From Visograph, user can also enable/disable ES function by keyboard. It will combine with DI status if DIs are configured as ES function.

IPRO-STATUS	DI change status	BUTTON	NEXT IPROSTATUS
OFF	Off	OFF	OFF
OFF	OFF→ON	OFF	ON, "ES" status on Viso is forced to "ON" and "SET" is blinking.
OFF	OFF	OFF → ON	ON TO be switched off again by digital input, the following cycle has to be done: DI: off→on→off After this operation, "ES" status on Viso is forced to "OFF" and "SET" stop blinking.
ON	OFF → ON	ON	ON
ON	ON → OFF	ON	OFF, "ES" status on Viso is forced to "OFF" and "SET" stop blinking.
ON	ON	ON → OFF	OFF To be switched on again by digital input, the following cycle has to be done: DI: on→off→on after this operation, "ES" status on Viso is forced to "ON" and "SET" is blinking.

20 AUXILIARY RELAYS ACTIVATED BY DIGITAL INPUTS

The relays set as AUX1 ... AUX8 can be activated by digital input set as AUX1 ... AUX8.

20.1 Parameters involved

 Label
 Description
 Range

 DIC1 ...DIC43
 Digital input 1 ...43 configuration
 10÷144c

20.2 Activation

There are 3 ways to activate the relays set as AUX1... AUX8:

- 1. By digital input set as 1420149c
- 2. By serial command
- 3. By thermostat probe set as AUX Probe.

NOTE: follows the number 1..3 for the priority.

20.3 Action

When the digital input set for activate an AUX output is on, the corresponding output is activated.

21 HVAC cooling control

21.1 Resources

Digital outputs: DOCxx =

1510	Solenoid valve for HVAC control
151c	Solenoid valve for HVAC control
1520	Pump for HVAC control
152c	Pump for HVAC control

Digital inputs: DICxx =

14		
	1890	HVAC control request
	189c	HVAC control request
	190o	HVAC pump flow switch
	190c	HVAC pump flow switch
	1910	HVAC pump thermal protection
	191c	HVAC pump thermal protection

Analog inputs: AICxx =

203/204	NTC/NTC CPC Temperature Probe	Option, if the probe is not enabled the temperature
	Evaporator in HVAC cooling control	regulation is not performed and the pump will be
		activated or de-activated after Solenoid valve
		according to CC01 and CC02 delay times.

21.2 Parameters

- CC01 Activation delay between Pump and Solenoid valve Range 0÷600 sec
- CC02 De-activation delay between Solenoid valve and Pump
- Range 0÷600 sec
- CC03 Set point for Pump for HVAC control
- Range -50.0°C ÷ 100.0°C
- CC04 Differential for CC03
- Range 0.1 ÷ 30.0

21.3 Regulation

21.3.1 Activation:

21.3.1.1 Pump regulation without "NTC Temperature Probe Evaporator in HVAC cooling control"

When the controller receives the signal to activate the HAVC, it switches ON the Pump and if there are not alarms after CC01 delay the controller switches ON the Solenoid valve .

In case of flow switch alarms, iProRACK tries 3 times to start the system after that an alarm is given.

See below the activation sequence:

21.3.1.2 Pump regulation according to "NTC Temperature Probe Evaporator in HVAC cooling control"

If the temperature probe is present, the control of the temperature is added to previous control as shown in the following picture:

21.4 HVAC DEACTIVATION IN CASE OF HIGH EXTERNAL TEMPERATURE

It's possible to stop HVAC in case of high external temperature and refrigeration call always activated.

21.4.1 Parameters

CC05 Gascooler outlet temperature threshold to enable the HVAC stop

CC06 HVAC stop delay with suction temperature > SETC1 + differential + parallel compr. at 100% + gas cooler outlet temperature > CC05

CC07 HVAC enabling delay after stop for high temperature conditions

21.4.2 Regulation

In case of high external temperature, and if medium temperature and parallel compressor running at full speed for a long time (CC=6) the HVAC is switched off. HAVAC can restart after a set time (par. CC07)

22 HEAT RECLAIM FOR TRANSCRITICAL CO2 RACK

Controller manages up to 2 heatreclaims for tap water and building heaters. The system is flexible, see below different possibilities.

22.1 SINGLE HEAT RECLAIM WITHOUT PUMP

22.1.1 Case 1: single heat reclaim with external signal 0-10V or 4-20mA

MAIN PARAMETERS:

HTRC0 = 0; Type of input signal for heat reclaim_1: Voltage

LABEL	RESOURCE	VALUE	DESCRIPTION	MANDATORY
HR request	DICxx	97	Heat reclaim Circuit 1	YES

1592025810 IPRC208-215-315D VTIPR GB R6.4 15.02.2021

	AICxx	171 or 172	0-10V or 4-20mA H-R signal	YES
Tdsc	AICxx	158	PTC Discharge line circuit 1	YES
Tphr	AICxx	166	NTC CO2 Temperature post heat reclaim	YES
Pgc	AICxx	169 or 170	Gas Cooler pressure	YES
Tgc	AICxx	154 or 155	Gas Cooler outlet temperature	YES
DO-3WV	DOCxx	125	3 way valve HR1	YES

1.1.1 CASE 2: single heat reclaim with water tank temperature

MAIN PARAMETERS: HTRC0 = 1 HTRC36 = 0

Resouces

Label	Resource	Value	Description	Presence
HR request	DICxx	97	Heat reclaim Circuit 1	OPTION
	AICxx	171 or 172	0-10V or 4-20mA H-R signal	NO
Twt	AICxx	164	NTC H-R tank water temperature	YES
Tdsc	AICxx	158	PTC Discharge line circuit 1	YES
Tphr	AICxx	166	NTC CO2 Temperature post heat reclaim	YES
Pgc	AICxx	169 or 170	Gas Cooler pressure	YES
Tgc	AICxx	154 or 155	Gas Cooler outlet temperature	YES
DO-3WV	DOCxx	125	3 way valve HR1	YES

22.1.2 Case 3: single heat reclaim with differntial regulation

MAIN PARAMETERS: HTRC0 = 1 HTRC36 = 1

Resources

Label	Resource	Value	Description	Presence
HR request	DICxx	97	Heat reclaim Circuit 1	OPTION
	AICxx	171 or 172	0-10V or 4-20mA H-R signal	NO
Twt	AICxx	164	NTC H-R tank water temperature	YES
Thrin	AICxx	162	NTC H-R secondary fluid inlet temperature	YES
Throut	AICxx	160	NTC H-R secondary fluid outlet temperature	YES
Tdsc	AICxx	158	PTC Discharge line circuit 1	YES
Tphr	AICxx	166	NTC CO2 Temperature post heat reclaim	OPTION
Pgc	AICxx	169 or 170	Gas Cooler pressure	YES
Tgc	AICxx	154 or 155	Gas Cooler outlet temperature	YES
DO3WV	DOCxx	125	3 way valve HR1	YES

22.2 Adjustment Heat reclaim 1 for Case 1, 2, 3

22.2.1 Enabling conditions

To enable the heat reclaim we need that all the 3 conditions are true, otherwise the standard regulation keeps on running.

- a. The digital input is active or the water temperature is below the set point
- b. The external voltage signal is above the activation threshold
- c. At least least 1 compressor of Circuit 1 is running,

22.2.2 Gas cooler pressure modulation

With the heat reclaim enabled the pressure on the gascooler depends on the external signal ot water tank temperature according to the following diagrams:

22.2.5 From standard regulation to heat reclaim

The controller doesn't move the pressure from gas cooler pressure set point to the value resquested by the HR regulation immediately, but it's possible to increse the pressure from the current values of HTRC18 bar every HTRC19 min as shown in the below graph

HEAT RECLAIM START

22.2.6 Safety conditions

22.2.6.1 Discharge temperature control

To assure a good HR operation mode the discharge temperature has to be higher than the minimimum temperature set in the parameter HTRC7.

If the temperature detected by discharge AICxx = 157 remains below HRTC7 thereshold for the HRT9 time the HR is witched off and normal regulation restarts.

If enabling conditions are met, it can restart after HTRC13 timer

22.2.6.2 Post heat reclaim temperature control

To assure a good HR operation mode the post heat reclaim temperature has to be higher than the minimimum temperature set in the parameter HTRC10.

Once this condition is not satisfied for the HRT12 time, the HR is witched off and normal regulation restarts. If enabling conditions are met, it can restart after HTRC13 timer

22.2.7 From heat reclaim to standard regulation

When the Heat Reclaim is disabled controller moves from HR to standard regulation.

The HR recover function is used.

In this case, the pressure set point is decreased of HTRC5 every HTRC6 mins till the pressure set point value, requested by the regulation is matched.

HEAT RECLAIM RECOVER

Fig. 1,

22.3 Single heat reclaim with gas cooler by-pass

22.3.1 Schema and resources

Resources

Tgc	AICxx	154 (or 155)	NTC (or NTC CPC) Gas cooler outlet temperature	YES
Thpv	AICxx	167 (or 168)	NTC (or NTC CPC) temperature before HPV	YES
Tphr	AICxx	166	NTC CO2 Temperature post heat reclaim	YES
DO3WV-BP	DOCxx	138	3way valve gas cooler by-pass relay	YES
Pgc	AICxx	169 or 170	Gas Cooler pressure	YES

22.3.1.1 By pass valve management

The gas cooler by-pass is enabled by parameter HTRC38, with HTRC38 = yes, the controller managed properly the fans to have them off, before activating the 3way valve relay to by-pass the gas cooler.

Once the controller has matched the condition to de-activate the fans, the 3WV-BP, by pass valve relay, is activated and the gas cooler outlet temperature reference moves from Tgc to Thpv probe If it's necessary to restart the functionality of the gas cooler the 3WV-BP by pass valve relay is de-activated and the gas cooler outlet temperature reference probe dmove from Thpv to Tgc

22.4 Pump regulation – this is valid for both the HRs when the pump is present

22.4.1 On/off pump with regulation based on the water tank temperature

The pump is present only with HTRC0 = 1

Label	Resource	Value	Description	Presence
HR request	DICxx	97	Heat reclaim Circuit 1	OPTION
	AICxx	171	0-10V H-R signal	NO
Twt	AICxx	164	NTC H-R tank water temperature	YES
Tdsc	AICxx	158	PTC Discharge line circuit 1	YES
DO3WV	DOCxx	125	3 way valve HR1	YES
DOpump1	DOCxx	126	H-R water pump1 output	YES
Dlpfs	DICxx	171	H-R pump1 flow switch alarm	YES
Dlpth	DICxx	172	H-R pump1 thermal protection alarm	YES

HR activation

The HR is activated if the HR digital input, if present, is enabled, and the temperature of the water is below the set point (Twt < HTRC14).

Controller switches on the pump and verifies the status of the flow switch.

In case the flow swtich signals an issue, the pump will be turned off and the Flow switch alarm is signalled. Manual reset is required to make the pump available again. See also Alarm table.

HR de-activation

The regulation remains on till or the HR digital input is disabled or water temperature is above the set plus half differential (Twt > HTRC14+ HTRC15/2),

When the HR is disabled, the 3 way valve relay (3WV) is switched off and after HTRC34 timer the pump is switched off:

Safety conditions

The following safety conditions are taken in account when the HR is activated:

Tank water temperature: it must be below the max water temperature threshold HTRC41 Pump safeties (thermal and flow switches) Compressor discharge temperature; it has to be higher than HTRC/ threshold.

22.4.2 <u>Modulating pump regulation, based on the temperature of the</u> water at the tank outlet enabled with HTRC36 = 0

Resources

Label	Resource	Value	Description	Presence
HR request	DICxx	97	Heat reclaim Circuit 1	OPTION
	AICxx	171	0-10V H-R signal	NO
Twt	AICxx	164	NTC H-R tank water temperature	YES
Tdsc	AICxx	158	PTC Discharge line circuit 1	YES
Tphr	AICxx	166	NTC CO2 Temperature post heat reclaim	YES
Pgc	AICxx	169 or 170	Gas Cooler pressure	YES
DO3WV	DOCxx	125	3 way valve HR1	YES
DOpump	DOCxx	126	H-R water pump output	YES
0-10VPump	AOCxx	19	0-10V H-R water pump output	YES
Dlpfs	DICxx	171	H-R pump flow switch	YES
Dlpth	DICxx	172	H-R pump thermal protection	YES

HR activation

The HR is activated if the HR digital input, if present, is enabled, and the temperature of the water is below the set point (Twt < HTRC14).

Controller switches on the pump and verifies the status of the flow switch.

In case the flow swtich signals an issue, the pump will be turned off and the Flow switch alarm is signalled. Manual reset is required to make the pump available again. See also Alarm table.

HR regulation

When the HR is activated, the pump speed is modulated by Ao_pmp according to diagram below

till or the HR digital input is disabled or water temperature is above the set plus half differential (Twt > HTRC14+ HTRC15/2).

When the HR is disabled, the 3 way valve relay (3WV) is switched off and after HTRC34 timer the pump is switched off:

lf

THEN:

- Pump 1 is activated + AO pmp at min speed 4.
- 5. Flow switch status verification after delay timer (HTRC32)
- 6 If the flow alarm has not been activated

THEN the relay 3WV is activated and the pump speed is modulated by Ao pmp (proportional band see diagram below) with Max % variation/s HTRC31. OTHERWISE the pump is switched off.

In this case, if the activation conditions 1, 2, 3, remains true, after 5 mins the pump is switched on again and we restart from point 4,

After 3 consecutive times that the flow switch alarm is activated, the pump will be turned off and the Flow switch alarm is signalled. Manual reset is required to make the pump available again. See also Alarm table

Where: Temp = Twt SETw = HTRC14 for Heat Reclaim 1

Temp = Twt2 HTRC22 for Heat Reclaim 2

HYw = HTRC15 for Heat Reclaim 1
Vmin = HTRC26 for Heat Reclaim 1
Vmax = HTRC27 for Heat Reclaim 1

HTRC23 for Heat Reclaim 2 HTRC29 for Heat Reclaim 2 HTRC30 for Heat Reclaim 2

Regulation: de-activation conditions

The regulation remains on till one of the follwing conditions happen:

- 1. DI_hr is disabled
- 2. Twt > HTRC14+ HTRC15/2
- 3. Twt > = HTRC41-High temperature alarm of tank water
- 4. Pump 1 (Dlpth) thermal switch alarrm is activated
- 5. Flow swtich DIpfs is disabled for more than (HTRC32/2)
- Temp. TdSc < HTRC7 enabling threshold for HR1 when HR2 is not running or not present for HTRC9 time-,

or

 $\mbox{Tphr2}\xspace < \mbox{HTRC20}\xspace$ - enabling threshold for HR1 when HR2 is running for HTRC21 time-. or

AICxx = 166 < HTRC10 - enabling threshold for HR1 when HR2 is not running or not present for the time HTRC12.

(AICxx = 185 < HRTC10 - enabling threshold for HR2 when HR1 is not running for time HTRC12.)

Regulation:

de-activation

actions

- 1. 3 way valve relay (3WV) relay is switched off
- 2. After HTRC34 pump relay (DOpump) is switched off if the points 4. And 5. are false
- 3. After HTRC34 Analog. Output (AO_pmp) is set to zero off if the points 4. And 5. are false
- If point 4 or point5 alarm is active, the pump DO and AO will be stopped immediately without considering HTRC34.

22.4.3 <u>Modulating pump regulation, based on the temperature</u> <u>differential at outlet and inlet of heat exchanger enabled only</u> when HTRC36 = 1

Resources

Label	Resource	Value	Description	Presence
HR request	DICxx	97	Heat reclaim Circuit 1	OPTION
	AICxx	171	0-10V H-R signal	NO
Twt	AICxx	164	NTC H-R tank water temperature	YES
Tdsc	AICxx	158	PTC Discharge line circuit 1	YES
Tphr	AICxx	166	NTC CO2 Temperature post heat reclaim	OPTION
Pgc	AICxx	169 or 170	Gas Cooler pressure	YES
DO3WV	DOCxx	125	3 way valve HR1	YES
DOpump	DOCxx	126	H-R water pump output	YES
0-10VPump	AOCxx	19	0-10V H-R water pump output	YES
Dlpfs	DICxx	171	H-R pump flow switch	YES
Dlpth	DICxx	172	H-R pump thermal protection	YES
Thrin	AICxx	162	NTC H-R secondary fluid inlet temperature	YES
Throut	AICxx	160	NTC H-R secondary fluid outlet temperature	YES

Regulation: activation conditions

- lf
- 1. DI_hr (DICxx=97), is present and active
- 2. ANDTwt < HTRC14
- 3. HTRC13 is over
- 4. AND all the following conditions are true:
 - a. Pump Thermal protection (DIpth) is not active
 - Temp. TdSc > HTRC7 enabling threshold for HR1 when HR2 is not running or not present -,
 - or

Tphr2 > HTRC20 - enabling threshold for HR1 when HR2 is running -.

- c. At least one compressor of circuit 1 is active
- AICxx = 166 ≥ HRTC10 (2) for HR1 when HR2 is not running or not present and AICxx
 = 185 ≥ HRTC10 (2) for HR2 when HR1 is not running

THEN:

- 7. Pump 1 is activated + AO_pmp at min speed
- 8. Flow switch status verification after delay timer (HTRC32)
- 9. If the flow alarm has not been activated

THEN the relay 3WV is activated and the pump speed is modulated by Ao_pmp (proportional band see diagram below) with Max % variation/s HTRC31. Target is to maintain the differential temperature Throut-Thrin to the set SETd value HTRC16. OTHERWISE the pump is switched off, the relay 3WV keeps its status.

In this case, if the activation conditions 1. 2. 3. remains true, after 5mins the pump is switched on again and we restart from point 4,

After 3 consecutive times that the flow switch alarm is activated, the pump will be turned off and the Flow switch alarm is signalled. Manual reset is required to make the pump available again. See also Alarm table

ANALOG OUTPUT BEHAVIOR (it's valid for HR1 and HR2)

Regulation: de-activation conditions

The regulation remains on till one of the follwing conditions happen:

- 1. DI_hr is disabled
- 2. Twt > HTRC14+ HTRC15/2)
- 3. Twt > = HTRC41-High temperature alarm of tank water
- 4. Pump 1 (Dlpth) thermal switch alarrm is activated
- 5. Flow swtich Dlpfs is active for more than (HTRC32/2)
- Temp. TdSc < HTRC7 enabling threshold for HR1 when HR2 is not running or not present for the time HTRC9 -,

or

or

Tphr2 < HTRC20 - enabling threshold for HR1 when HR2 is running for the time HTRC21

•

AICxx = 166 < HTRC10 - enabling threshold for HR1 when HR2 is not running or not present for the time HTRC12.

(AICxx = 185 < HRTC10 - enabling threshold for HR2 when HR1 is not running for time HTRC12.)

7. .All the compressor of the circuit 1 are switched off.

Regulation: de-activation actions

- 1. 3 way valve relay (3WV) relay is switched off
- 2. After HTRC34 pump relay (DOpump) is switched off if the points 4. And 5. are false
- 3. After HTRC34 Analog. Output (AO_pmp) is set to zero if the points 4. And 5. are false
- If point 4 or point5 alarm is active, the pump DO and AO will be stopped immediately without considering HTRC34.

22.5 SINGLE HEAT RECLAIM WITHOUT PUMP

22.5.1 Case 1: SINGLE HEAT RECLAIM WITH EXTERNAL SIGNAL 0-10V

MAIN PARAMETERS: HTRC0 = 0; HTRC36 = not used if HTRC0 = 0

22.6 HEAT RECLAIM with 0-10V input

22.6.1 HEAT RECLAIM SCHEMA

Notes: The modulating 3way valve and modulating gas cooler by-pass are not managed in case HTRC0=1 by temperature.

22.6.2 HEAT RECLAIM FUNCTIONALITY

For the Heat Reclaim 1 (only for HR1. Not for the Heat Reclaim 2 HR2) we should follow the below schema, in case of:

- 0-10V signal (i.e. if HTRC0 = 0 Voltage) and
- Heat reclaim 1 (DICx = 97) active:

22.6.2.1 Zone 1: 0<HR Voltage signal<HTRC1

If all the starting conditions are respected::

- 1. Pump 1 is activated
- 2. The condenser pressure set point is not modified.

22.6.2.2 Zone 2: HTRC1<HR Voltage signal<HTRC2

In addition to zone 1, the pressure is increased between HTRC3 (MIN) and HTRC4 (MAX)

22.6.2.3 Zone 3: HTRC2<HR Voltage signal<HTRC43

in addition to Zone 1 and Zone 2, increase the fan set point with a RC33 offset (at HTRC2 the fan set point increment is 0. Proportionally from HTRC2 to HTRC43 the set point is increased from 0 to the offset RC33) this will lead the fan to stop.

22.6.2.4 Zone 4: HTRC43<HR Voltage signal<HTRC44

In addition to #1 and #2. and #3, If HTRC38=Yes, the by-pass of the gas cooler is done. The by-pass valve is on if signal is higher than HTRC44. The by-pass valve is OFF if signal is lower than HTRC43.

With HTRC43<HR Voltage signal<HTRC44 the by-pass valve maintains is status.

NOTE: If HTRC43=HTRC44 We disable gas coole by pass.

22.6.2.5 Safety check during gas cooler by-pass

When the gas cooler by-pass is active, if the pressure is above HTRC4+HTRC45 bar the gas cooler by-pass relay is de-activated.

It will be activated again when pressure is below HTRC4, and the safety timer HTRC40 is over. HTRC40 timer is activated when the pressure is below HTRC4.

23 PARALLEL COMPRESSION FOR TRANSCRITICAL CO2 RACK

23.1 INPUTS - OUTPUTS TABLE

Detailed description	Setting	Value
Gas Cooler outlet temperature	AICxx	154
Gas cooler pressure	AICxx	169 or 170
Flash tank Pressure	AICxx	152
Suction temperature of parallel compressors	AICxx	175
Discharge temperature of parallel compressors	AICxx	
Parallel compressor Inverter digital output	DOCxx	127
0-10V signal for inverter of parallel compressor	AOCxx	25
Parallel compressor – Compress. 1	DOCxx	128

23.2 Parameters

LABEL	DETAILED DESCRIPTION	SETTING
SETPC	Parallel compression 1 Set Point	GC20-PC3
RC57	Regulation band width for parallel compressors	0.10÷10.00 bar; 0.1÷25.0 °C; 1÷80 PSI; 1÷50 °F; 10÷1000 KPA
PC1	BY-PASS Valve percentage to activate parallel compression	0÷99%
PC2	Time with BY-PASS VALVE > = at PC1 to activate parallel compression	0÷255s
PC3	Pressure setpoint for BY-PASS VALVE when the parallel compression is activated	SETPC÷500.00 bar; SETPC÷7250 PSI; SETPC÷50000 KPA
PC4	Minimum time between 2 following switching ON of the same parallel compressor	0÷1000min
PC5	Minimum time between the switching off of a parallel compressor and the following switching on	0÷1000min
PC6	Time delay between the insertion of two different parallel compressors	0÷5990s
PC7	Time delay between switching off of two different parallel compressors	0÷5990s
PC8	Minimum time parallel compressor on	0÷5990s
PC11	IF HTRC0 = 0, voltage AND PC11 = YES: disable Parallel compression with heat reclaim ON AND 0-10V HR signal > HTRC1 IF HTRC0 = 1, temperature PC11 = YES: disable Parallel compression with Heat reclaim ON	0÷1 (NO÷YES)

23.3 Configuration

_

23.3.1 IO_configuration - mandatory

At least **<u>1 digital output</u> DOCx** configured as:

- Inverter for parallel compression (DOCx = 127). In this case, the DO is not enough, in fact <u>1 analog output</u> AOCx has to be configured as:
 - 0-10V Inverter parallel compression (AOCx = 25) or

- 4-20mA Inverter parallel compression (AOCx = 26)
- Compressor for parallel compression (DOCx = 128). Like the standard compressors, the 2nd compressor has sense only if the 1st one is configured; etc.

1 analog input configured as:

Pressure Probe of CO2 flash tank (AICx = 152 or 153)

If the mandatory configuration is not respected, the parallel compression function cannot be activated.

23.3.2 IO_configuration - optional

DIGITAL OUTPUTS

Up to 6 addition digital outputs DOCx configured as parallel compressors with/without steps:

Ex: With 1 frequency compressor (inverter) and 2 compressors with 1 step each the configuration is:

- Inverter for parallel compression (DOCx = 127)
- Compressor 1 for parallel compression (DOCx = 128)
- Step of Compressor 1 for parallel compression (DOCx = 129)
- Compressor 2 for parallel compression (DOCx = 130)
- Step of Compressor 2 for parallel compression (DOCx = 131)

DIGITAL INTPUTS

Each compressor can have up to 3 safety digital inputs (Oil pressostate, Safety pressure switch, Thermal Safety).

Ex: With the previous configuration: 1 frequency compressor (inverter) and 2 compressors with 1 step each, each of them with 3 safety inputs the digital input configuration is:

DICx = 173Parallel compression- Compressor 1 oil pressostate

DICx = 174Parallel compression- Compressor 1 Safety pressostat

- DICx = 175Parallel compression- Compressor 1 Thermal Safety
- DICx = 176Parallel compression- Compressor 2 oil pressostate

DICx = 177 Parallel compression- Compressor 2 Safety pressostat

DICx = 145Parallel compression- Compressor 2 Thermal Safety

DICx = 182Parallel compression- Frequency compressor, oil pressostate

- DICx = 183Parallel compression- Frequency compressor, Safety pressostat
- DICx = 184Parallel compression- Frequency compressor, Thermal Safety
- DICx = 185Parallel compression- Inverter Safety

ANALOG INPUTS

Up 2 additional analog inputs for monitoring.

Ex: With the previous configuration: 1 temperature sensor on the suction line and 1 temperature sensor on the discharge line:

AICx = 175 NTC Suction line temperature parallel compressor

AICx = 177 PTC Discharge line temperature parallel compressor

23.4 Adjustment

23.4.1 Enabling conditions

If the By pass valve is operating with a percentage ≥ PC1 for the PC2 time, the first parallel compressor is switched on.

23.4.2 Adjustment

a. If the **inverter** is present, it uses the same kind of regulation of the standard inverter and it follows the setting of the parameters of the analog output used for Inverter parallel compression.

E.g. If AOC3 = 25, the parameters used for the inverter of parallel compressions are: AO3_1...AO3_26, and the exception to this is: instead use AO3_17, PC9 is used, instead use AO3_19, PC10 is used. While the standard compressors follow the PC4...PC9 parameters.

- b. If the **standard compressors** are used a dead band regulation is used, and the main parameters are: SETPC, RC57, PC4...PC9.
 - B. The BY-PASS valve set point will move from GC20 to PC3 (it keeps on working with this set point).

<u>Note</u>: The parallel compressors safeties can switch off compressors (if activated). In this case the compressors are considered not available and flash tank pressure is maintained by the BY-PASS valve Note: In case of probe error of CO2 flash tank (AICx = 152 or 153), the regulation of the full rack is stopped.

23.4.3 Disabling conditions

If the flash tank pressure falls below set point minus differential the parallel compressors are switched off In this situation, the bypass valve set point will move from PC3 to GC20 and the by pass valve will act to maintain this pressure.

23.4.4 Safety conditions

23.4.4.1 Pressure of flash tank

During heat reclaim the parallel compressors are swhitched on, independently from the setting of PC11 (Disable Parallel compression with heat reclaim ON) if the pressure in flash tank is above the safety value GC29

23.4.4.2 Circuit 2 compressors not working

If the circuit 1 (Circuit 1 is the circuit for the medium temperature MT) compressors are locked by:

- a. Safety digital inputs or off by core sense alarm.
- b. Manually disabled from Visograph.
- c. Safety timers

and they are not allowed to start even there is a turn on request from regulation, the by-pass valve is closed (minimum opening percentage) and parallal compressor will follow its regulation.

23.4.4.3 Parallel compressors not available due to safety conditions

If the parallel compressors are not available the by pass valve is used to maintain the set point in the flash tank.

24 Oil management

iProRACK can manage the solenoid valve connect oil separator with reservoir.

There are 5 types possible configuration, depending on the type of oil separator and reservoir used in the rack. Look at the below schema to set properly the kind of management:

- 1. Oil separator and reservoir without Low or High level inputs: the solenoid valve is managed according to the compressor status. (OIL1 = 1)
- 2. Oil separator with low level signal: the solenoid valve is managed according to the low level status. (OIL1 = 2)
- 3. Oil separator with low and high level signal: the solenoid valve is managed according to the status of both levels. (OIL1 = 3)
- 4. Oil management according to differential pressure betwenn reservoir and medium temperature compressors or parallel compressors and low level digital input in reservoir (OIL1 = 4)
- oil management according to differential pressure betwenn reservoir and medium temperature compressors or parallel compressors and low and high level digital inputs in reservoir (OIL1 = 5)

**** WARNING****

Because off the number of possible cycles, a SSR external relay should be used. In this case set an analog output to drive this SSR relay: See analog output configuration about this.
****WARNING ****

24.1 Solution 1, Oil management according to compressor status (OIL1=1)

24.1.1 Operation mode with compressors off

When all the compressors in circuit 1 are OFF the "Oil injection valve of circuit 1" works in duty cycle mode according to the following timers:

- OIL2 (ON valve)
- OIL3 (OFF valve)

NOTE

- With OIL2 =0 no injection is done.
- Because off the number of possible cycles, a SSR external relay can be used. In this case set an analog output to drive this SSR relay: See analog output configuration about this.

The same considerations and settings are available for circuit 2 (low temperature compressors)

24.1.2 Operation mode with compressors on

When at least one compressor in circuit 1 is ON the "Oil injection valve of circuit 1" works in duty cycle mode according to the following timers:

See the above notes about SSR and settings

24.2 Solution 2, oil management according to low level digital input in oil separator (OIL1=2)

24.2.1 Operation mode with low level switch not active

If digital input of low oil level in oil separator is not activated AND OIL10 timer is over the "Oil injection valve circuit 1" works in duty cycle mode according to the following timings:

NOTE

- With OIL2 =0 no injection is done.
- Because off the number of possible cycles, a SSR external relay can be used. In this case set an
 analog output to drive this SSR relay: See analog output configuration about this.

The same considerations and settings are available for circuit 2 (low temperature compressors)

TIME

24.2.2 Operation mode with low level switch active

With low oil level switch in oil separator **ON** the "Oil injection valve circuit 1" is switched **OFF**. When low oil level input is deactivated: controller wait the OIL10 timer is over, then the oil injection valve can cycle with OIL2 (ON valve) and OIL3 (OFF valve)

NOTE: the same regulation is available for circuit 2

24.2.3 Actions in case of low oil level

iProRACK can try to improve oil quantity in the oil sepator when it reaches low level. With low oil level signal, if OIL14 = 1 the inverter, if present and running, is forced to run at max speed for the the OIL12 time.

After OIL12 time, if the low level switch is still on, the "Low level oil warning" is signalled and the "Low oil level in circuit 1" relay is activated. Additioanally compressors can be stopped by setting OIL16=1.

24.3 Solution 3: oil management according to low and high level digital inputs in oil separator (OIL1=3)

24.3.1 Operation mode with low level switch not active

If digital input of low oil level in oil separator is not activated independently from the status of high level switch AND OIL10 timer is over the "Oil injection valve circuit 1" works in duty cycle mode according to the following timings:

- OIL2 (ON valve)
- OIL3 (OFF valve)

If High level switch in the oil separator is ON, after OIL24 cycles of oil injection we the follow warning si given: "Full oil separator alarm".

NOTE: If OIL24=0 none warning is signalled.

NOTE: the same regulation is available for circuit 2

24.3.2 Operation mode with low level switch active

With low oil level switch in oil separator **ON** the "Oil injection valve circuit 1" is switched **OFF**. When low oil level input is deactivated: controller wait the OIL10 timer is over, then the oil injection valve can cycle with OIL2 (ON valve) and OIL3 (OFF valve)

NOTE: the same regulation is available for circuit 2

24.3.3 Actions in case of low oil level

iProRACK can try to improve oil quantity in the oil sepator when it reaches low level. With low oil level signal, if OIL14 = 1 the inverter, if present and running, is forced to run at max speed for the OIL12 time.

After OIL12 time, if the low level switch is still on, the "Low level oil warning" is signalled and the "Low oil level in circuit 1" relay is activated. Additioanally compressors can be stopped by setting OIL16=1.

24.4 Solution 4: oil management according to differential pressure and low level digital switch in oil separator (OIL1=4)

24.4.1 Operation mode

Normal function: presence of oil in the oil separator.

With the low oil level digital switch not active in the oil separator, and OIL10 timer over, the "Oil injection valve circuit 1" works in duty cycle mode according to the following timings.

Differential pressure regulation

With OIL20 = SPC1 (Oil receiver pressure - Suction pressure), if the differential pressure is not satisfied: (Oil receiver pressure - Suction pressure lower than OIL 18) the "Oil injection valve circuit 1" works in duty cycle mode according to the following timers:

OIL2 (ON valve) OIL3 (OFF valve)

OIL3 (OFF valve)

independently from the status of low oil level switch.

If the low level switch is on, the "Oil injection valve circuit 1" is stopped only if the differential pressure is above OIL18 + OIL19.

24.4.2 Actions in case of low oil level

iProRACK can try to improve oil quantity in the oil sepator when it reaches low level.

With low oil level signal, if OIL14 = 1 the inverter, if present and running, is forced to run at max speed for the OIL12 time.

After OIL12 time, if the low level switch is still on, the "Low level oil warning" is signalled and the "Low oil level in circuit 1" relay is activated. Additioanally compressors can be stopped by setting OIL16=1.

24.4.3 Operation mode with low level switch active

Differential pressure regulation

With OIL20 = SPC1, if the differential pressure is not satisfied: (Oil receiver pressure - Suction pressure lower than OIL 18) the "Oil injection valve circuit 1" works in duty cycle mode according to the following timings: OIL2 (ON valve): OIL3 (OFF valve)

24.4.4 Oil management with parallel compressors

Differential pressure regulation

With parallel compressors, set parameter OIL20 = FTP: Oil receiver pressure - Flash tank pressure, in this way controller takes in account this differential pressure as refeence for regulation.

Normal function: presence of oil in the oil separator.

With the low oil level digital switch not active in the oil separator, and OIL10 timer over, the "Oil injection valve circuit 1" works in duty cycle mode according to the following timings. Oil injection

- OIL2 (ON valve)
 - Circuit 1 OIL3 (OFF valve)

Differential pressure regulation

With OIL20 = FTP: (Oil receiver pressure - Flash tank pressure), if the differential pressure is not satisfied: (Oil receiver pressure - flash tank pressure lower than OIL 18) the "Oil injection valve circuit 1" works in duty cycle mode according to the following timers:

OIL2 (ON valve) OIL3 (OFF valve)

independently from the status of low oil level switch.

24.4.5 Actions in case of low oil level

iProRACK can try to improve oil guantity in the oil sepator when it reaches low level. With low oil level signal, if OIL14 = 1 the inverter, if present and running, is forced to run at max speed for the Oll 12 time

After OIL12 time, if the low level switch is still on, the "Low level oil warning" is signalled and the "Low oil level in circuit 1" relay is activated. Additioanally all the compressors can be stopped by setting OIL16=1.

24.5 Solution 5: oil management according to differential pressure and with high and low level digital switches in oil separator and low level switch in reservoir (OIL1=5)

Both the configuration with (OIL20 = FTP) or without parallel compressors (OIL20 = SPC1) of previous paragraph can be set. Regulation is like in previous paragraph.

In addition, the high oil level switch in oil separator can be set and considered (DICxx = 162: High oil level in oil separator circuit 1).

With this input active, the controller performs OIL24 oil injection cycles, if after these cycles the high oil switch is still active, the alarm "Oil separator full" is given.

24.5.1 Low level in oil receiver alarm

With low level digital input in the oil **receiver ON**, is possible to try to ricover the oil by parameter OIL14 = 1. In this case the inverter, if present and running, is forced to run at max speed for the the OIL12 time.

After OIL12 time, if the low-level switch is still on, the "Low level oil warning" is signalled and the "Low oil level in circuit 1" relay is activated. Additioanally compressors can be stopped by setting OIL16=1.

NOTE: the same regulation is available for circuit 2

25 DE-SUPERHEATER MANAGEMENT

25.1 Circuit Principle

The de-superheater is small condenser used to cool the hot gas coming from the discharge line of compressors to increase the system performance

25.2 Inputs – Outputs Table

Description	Setting	Value	Function	Mandatory
External probe	AICxx	13 or 14 or 31 or 32	Temperature probe used to detect external temperature This probe can be shared between the de-superheater	NO
De-superheat outlet temperature	AICxx	95 or 95 for De-SH 1 97 or 98 for De-SH 2 99 or 100 for De-SH 3	Temperature probe placed on the outlet of de-superheater to detect the outlet temperature	YES
Analog output for desupeheater	AOCxx	It depends on the analog output type and where it is placed for instace for A.O. of TAB. A 27 or 28 for De-SH 1 28 or 29 for De-SH 2 30 or 31 for De-SH 3	To drive the fan speed	YES
Relay output	DOCxx	134 for De-SH 1 135 for De-SH 2 136 for De-SH 3	To enable the fan (optional)	NO
Safety Thermal input	DICxx	158 Thermal safety De-Superheater 1 159 Thermal safety De-Superheater 2 160 Thermal safety De-Superheater 3	Stope the correspondent de- superheater when enabled	NO

25.3 Parameters

For each desuperheat there is a set of parameters with the following meaning

DSH1	Minimum set point for the de-superheater 1	-40÷110°C/-40÷230°F
DSH2	Differential for the de-superheater 1	0.0÷12.0°C; 0÷24°F

DSH3	Regulation band for the de-superheater 1	0.1÷30.0 °C; 1÷50 °F;
DSH4	Regulation activation for the de- superheater 1	 on = Regulation always active if the iProRACK in on;
		Circ1 = Regulation on if at least 1 compressor of the circuit 1 is on; Circ2 = Regulation on if at least 1 compressor of the circuit 2 is on. PC = Regulation on if at least 1 Paralell compressor is on.
DSH5	Minimum value for the analogue Output of de-superheater 1	0 ÷ DSH6
DSH6	Maximum value for the analogue Output of de-superheater 1	DSH5 ÷ 100

25.4 Configuration

Mandatory conditions:

✓ <u>1 analog output</u> AOCxx has to be configured to drive the desuperheatre fan speed: for instace for A.O. of TAB. A AOCxx = 27 or 28 for De-SH 1; 28 or 29 for De-SH 2; 30 or 31 for De-SH 3.

1 analog input configured as its de-superheat outlet temperature

AICxx = 95 or 95 for De-SH 1; 97 or 98 for De-SH 2; 99 or 100 for De-SH 3

If the mandatory configuration is not respected, the de-superheater function cannot be activated.

25.5 Adjustment

25.5.1 <u>CASE 1: WITH DE-SUPERHEATER OUTLET TEMPERATURE +</u> ANALOG OUTPUT FOR DESUPEHEATER

In this case the de-superheater (De-SH) 1 (same consideration for De-SH 2 e De-SH 3) will use the following parameters:

DeSH set point = DSH1 Regulation band: DSH3 Min out = DSH5 Max out = DSH6

The behaviour of the analog output is shown in the picture below

25.5.2 <u>CASE 2: WITH DE-SUPERHEATER OUTLET TEMPERATURE +</u> <u>ANALOG OUTPUT FOR DESUPEHEATER + EXTERNAL</u> <u>TEMPERATURE (EX-T) AND RELAY</u>

In this case the de-superheater (De-SH) 1 (same considerations for De-SH 2 e De-SH 3) will use the following parameters:

DeSH set point (DeSH-SP) =

b.

a. External temperature (EX-T) + DSH2 if it is > = DSH1

DSH1 with EX-T+DSH2 <DSH1

Regulation band: DSH3 Min out = DSH5 Max out = DSH6

The behaviour of the analog output is shown in the picture below

25.5.3 Safety conditions

a. Extenal probe failure

The controller moves regulation from case: 25.5.2 to case 25.5.1.

b. De-SH outlet probe failure

The analog output will be set to zero, the relay, if present, is switched off.

c. D.I. of thermal Safety De-Superheater x activation

The analog output will be set to zero, the relay, if present, is switched off. The Visograph shows the alarm in the menu De-SHx (Thermal Safety De-Superheater x alarm) See alarm. table

26 Adiabatic spray function

26.1 General principles

The gas cooler is normally designed to operate correctly at maximum thermal load at maximum ambient temperature. However, these severe working conditions could be encreased for a brief period of the year, whilst for the remainder of the year - in less severe conditions – the machine works normally. This is why an adiabatic spray system is applied to the gas cooler, where air crossing the coils can be cooled, obtaining an increase in capacity of the gas coolers and an temperature extension of operating conditions.

26.2 Resources

A relay DOCxx = 150 (Adiabatic spray valve) has to be configured and the

The external temperature probe AICxx = 13 or 31 or 140 has to be configured.

The fan should be managed by analog output to control fan speed: **AOCx = 6 or 8 or 15 or 17**: output inverter for condenser – Circuit 1

26.3 Parameters

RC49 Analog output setting for condenser fan management with adiabatic spray enabled Range: $0\div 2$

- 0: No limitation
- 1: Analog output limited to AOx_20
- 2: **Fix at AOx_20**
- RC50 Tempearature Set point (to stop) adiabatic spray
- Range: 0.0+50°C; 32.0+122 °F;
- UM: according to CF26
- RC51 Differential for adiabatic spray regulation It is added to the set point RC50
- Range: 0.1+25.0°C; 1+50°F
- UM: according to CF26

AOx_20 (Maximum) value of A.o.x during adiabatic spray

RC52 Adiabatic function disabled during heat reclaim *0=NO*, adiabatic function is enabled also during heat reclaim 1=YES, adiabatic function is disabled in case of heat reclaim

26.4 Regulation

E.I. with RC49 = 2: fan speed fixed at AOx_20 when adiabatic spray is activated.

NOTE: With AICxx = 13 or 31 or 140 in error the function is disabled (DOCxx = 150 is turned off)

26.4.1 Analog output for condenser fan with adiabatic spray on

According RC49 the analog output for condenser fan (AOCx = 6 or 8 or 15 or 17) will work as described below:

RC49 = 0

The condenser fans follow the standard regulation.

RC49 = 1

The maximum condenser fans speed is limited from AOx_13 to AOx_20.

RC49 = 2

The condenser fans speed is fixed at AOx_20.

NOTE1.

In case of:

- HP1: High pressure switch for Circuit 1 alarm
- HAF1: Maximum pressure (temperature) alarm fans section for Circuit 1
- HP Gas Cooler: High pressure in the gas cooler

The fan must run at max speed AOx_13, and Aox_20 can be used only when the alarm recovers

NOTE2.

In case of silent mode and adiabatic spray functions enabled at the same time, and RC49 \neq 0, the controller will use as max analog output for fan the min between AOx_20 and AOx_21.

27 CORESENSE INTEGRATION – compatibility guarantee only for vers. F35 or later of Coresense

Description:

The coreSense devices are embedded on the Copeland compressors. These devices get out the information of the compressor. The IProRACK has to read (regarding the communication the IProRACK is a MASTER) out from the Copeland Compressor Core Sense device (regarding the communication the coresense is a SLAVE) this information, using the serial line and manage them.

27.1 CONNECTION

CONNECTION DIAGRAM

The communication between the IProRACK and the corse sense device is Modbus.

27.1.1 Description of the connections

Connect the Coresenses to the

Connector	Description
R5485 Master Term - + grd ■ × 4 95 96	RS485 Master connector Rx and Tx LED to indicate that communication is active Closed circuit terminal (Term)

CO1	CO-ADDRESS DIGITAL OUT 1	Address core sense out 1	1 – 15; NU = not used
CO2	CO-ADDRESS DIGITAL OUT 2	Address core sense out 2	1 – 15; NU = not used
CO3	CO-ADDRESS DIGITAL OUT 3	Address core sense out 3	1 – 15; NU = not used
CO4	CO-ADDRESS DIGITAL OUT 4	Address core sense out 4	1 – 15; NU = not used
CO5	CO-ADDRESS DIGITAL OUT 5	Address core sense out 5	1 – 15; NU = not used
CO6	CO-ADDRESS DIGITAL OUT 6	Address core sense out 6	1 – 15; NU = not used
C07	CO-ADDRESS DIGITAL OUT 7	Address core sense out 7	1 – 15; NU = not used
CO8	CO-ADDRESS DIGITAL OUT 8	Address core sense out 8	1 – 15; NU = not used
CO9	CO-ADDRESS DIGITAL OUT 9	Address core sense out 9	1 – 15; NU = not used
CO10	CO-ADDRESS DIGITAL OUT 10	Address core sense out 10	1 – 15; NU = not used
CO11	CO-ADDRESS DIGITAL OUT 11	Address core sense out 11	1 – 15; NU = not used
CO12	CO-ADDRESS DIGITAL OUT 12	Address core sense out 12	1 – 15; NU = not used
CO13	CO-ADDRESS DIGITAL OUT 13	Address core sense out 13	1 – 15; NU = not used
CO14	CO-ADDRESS DIGITAL OUT 14	Address core sense out 14	1 – 15; NU = not used
CO15	CO-ADDRESS DIGITAL OUT 15	Address core sense out 15	1 – 15; NU = not used
CO16	CO-BAUD RATE	BAUD RATE	19200-9600(0-1)
CO17	CO-PARITY SELECTION	PARITY SELECTION	NO-YES (0-1)

27.1.2 How to configure the CORESENSE communication

ONLY AT THE POWER ON: The IProRACK checks the configuration of the coresense parameters configuration.

Example to configure a circuit 1 with 3 compressors:

- 1) parameters DOC1= 7c Compressor 1 circuit 1 close polarity
- 2) parameters DOC3= 11c Compressor 2 circuit 1 close polarity
- 3) parameters DOC7= 15c Compressor 3 circuit 1 close polarity

It is necessary to configure the correct address parameter (parameters COxx) in according to the address assigned to the coresense mounted on the compressor (by the dip switch mounted on the coresense)

- Parameter to select the Coresense address mounted on the compressor 1 connected to the digital output 1 (70-73), is the parameter CO1
- Parameter to select the Coresense address mounted on the compressor 2 connected to the digital output 3 (72-73), is the parameter CO3
- Parameter to select the Coresense address mounted on the compressor 3 connected to the digital output 7 (79-83), is the parameter CO7.

28 INFORMATION from the Coresense

From the Coresense device there is different type of information:

- > ASSET INFORMATION
- > OPERATING PARAMETERS
- > SETTING PARAMETERS
- > ALARMS

1) ASSET INFORMATION

- Compressor Model Number.
- Compressor Serial Number.
- Sensor Module Firmware Revision Number.

2) OPERATING PARAMETERS

- Current.
- Locked Rotor Peak Current.
- R Phase Compressor Voltage.
- Y Phase Compressor Voltage.
- B Phase Compressor Voltage.
- Total number of LOP run hours.
- Total number of alarm hours.
- Total number of short cycles.
- Voltage.
- Power Consumption.
- Discharge temperature Values.
- Number of Compressor Running Hours.
- Number of Compressor Switching Cycles.

3) SETTING PARAMETERS : possibility to set these parameters

- Discharge temp trip value.
- Discharge temp trip Reset.
- Nominal voltage power supply.
- Voltage imbalance value.
- Anti-short-time
- Compressor Nominal Frequency
- P470 HW Configuration
- Reset Core Sense

4) ALARMS

28.1 Alarm management

The IProRACK reads from the coresense the following alarms: There are 3 type of the alarms:

- LOCKOUT ALARMS→ The lockout alarms are showed in the visograph alarm stage and after the description of the alarm is showed a label L to indicate the type of this alarm.
 - <u>Alarm management</u>: Compressor switch off.
 - <u>Status</u>: It is required a manual reset (on the core sense) or a remote reset to restore the compressor.
 - <u>Remote reset</u>: To consider this Alarm like a manual alarm in the IProRACK. (the remote reset means to send a reset command to the coresense.
- TRIP → The trip alarms are showed in the visograph alarm stage and after the description of the alarm is showed a label T to indicate the type of this alarm.
 - <u>Alarm management</u>: Compressor switch off.
 - <u>Status</u>: The compressor is unavailable until it is true the condition of the alarm.
 - <u>Auto reset</u>: To consider this Alarm like an automatic alarm in the IProRACK. (see as to manage the automatic Alarms). When the alarm returns OFF the compressor are restored.
- 3) **WARNING**→ The warning alarms are showed in the visograph alarm stage and after the description of the alarm is showed a label **W** to indicate the type of this alarm. This kind of Alarm is only a WARNING.
 - <u>Alarm management</u>: The compressor will go on working
 - <u>Status</u> : The compressor will go on working
 - <u>Auto reset</u>.

SUMMARY TABLE

Туре	ACTION	RESET	
LOCKOUT	COMPRESSOR SWITCH OFF	REMOTE RESET (COMMAND)	
	BUZZER ON	MANUAL RESET (CORE SENSE) the compressor will	
	LOG OF THE ALARM	return available after the reset.	
TRIP	COMPRESSOR SWITCH OFF	AUTOMATIC RESET : the compressor will return	
	BUZZER ON	available until the alarm will be off	
	LOG OF THE ALARM		
WARNING	COMPRESSOR WILL GO ON	AUTOMATIC RESET	
	WORKING		

28.1.1 List of the Alarms

Туре	Visograph Description	Code of Alarm
Lockout	Insufficient Oil Pressure L	37 - Low Oil Pressure Lockout
Lockout	Missing Phase L	42 - Phase Loss Lockout
Lockout	Locked Rotor L	41 - Locked Rotor Lockout
Lockout	High Discharge Temp L	39 - Discharge Temperature Lockout
Lockout	Low Voltage L	54 - Low Voltage Lockout
Lockout	Module Failure L	43 - P470 Module Failure Lockout
Trip	Low Voltage T	21 - Compressor Low Voltage Trip
Trip	Locked rotor T	31 - Locked rotor Trip
Trip	Missing Phase T	28 - Phase Loss Trip
Trip	Voltage Imbalance T	24 - Voltage Imbalance Trip
Trip	High Discharge Temp T	19 - Discharge Temp Trip
Trip	Motor Temp. T	32 - Motor Temperature Trip
Warning	Communication Error (to SM) W	16 - Communication Error to SM
Warning	Current sensor fault W	12 - Connection lost between sensor

Warning	Comunication Error to Ipro W	18 - Comunication Error to E2
Warning	No.run & Fault Temp Probe W	7 - Normal Running & Fault Temp Probe
Warning	Hw Conf. Mismatch W	17 - E2/P470 Configuration Mismatch
Normal	Normal Off	44 - Normal OFF
Normal	Normal On	45 - Normal Running

29 CONNECTION BETWEEN XWEB- IPRORACK -CORENSENSE

The iProRACK can be connected to the X-WEB, so the data carning from Coresenses can se seen and managed also by the X-WEB.

2) Connect the Coresense's RS485 line to the MASTER serial line of iProRACK.

R5485 Master	RS485 Master connector
Term - + gnd	Rx and Tx LED to indicate that communication is active
■ ■ ⊭ ៥ 94 95 96	Closed circuit terminal (Term)

3) Address setup among iProRACK and Coresenses:

The Coresenses will be seen by the X-WEB at the address immediately following the iProRACK address If IProRACK has address "n", Coresenses will have the consecutive addresses to IProRACK address: **n+ coresense Address**.

Example: IProRACK + 5 coresense

- IProRACK serial Address = 30
- CoreSense serial addresses = 1, 3, 7, 9. (set by dipswitch)
- The setup of Xweb regarding the coresense is:

Physical modbus addresses	Addresses in Xweb setup
IProRACK = 30	IProRACK = 30
Coresense 1 = 1	Coresense 1 = 31 (IProRACK add. + Coresense 1 add.)
Coresense 2 = 3	Coresense 2 = 33 (IProRACK add. + Coresense 2 add.)
Coresense 3 = 7	Coresense 3 = 37 (IProRACK add. + Coresense 3 add.)
Coresense 4 = 9	Coresense 4 = 39 (IProRACK add. + Coresense 4 add.)

30 ALARM LIST

Usually alarm conditions are signalled by means of:

- 1. Activation of alarm relays
- 2. Buzzer activation
- 3. Message on proper display

30.1 Alarm conditions – summary table

Code	Description	Cause	Action	Reset
		ALARMS	CIRCUIT 1	
LP1	Low pressure- switch alarm for Circuit 1	Low pressure switch Input 1 (the Input is configured as DICxx=101 Low pressure Circuit 1)	All compressors of Circuit 1 are turned off. Fans unchanged.	Automatically if the number of activation are less than AL12 in the AL13 time when the Input is disable. - The compressors restart working according to the working algorithm. Manually (if AL12 activation happened in the AL13 time) When the Input is disable: - Turn off and on the instrument/or rest the alarm manually from the Visograph
				 The compressors restart working according to the working algorithm.

Code	Description	Cause	Action	Reset
HP1	High pressure switch for Circuit 1 alarm	High pressure switch Input 1 (the Input is configured as DICxx=99 High pressure Circuit 1)	 All compressors of Circuit 1 are turned off. All fans are of Circuit 1 turned on. 	Automatically if the number of activation are less than AL29 in AL30 time when the Input is disable. - Compresso rs and fans restart working algorithm. Manually if AL29 activation happened in the AL30 time When the Input is disable: 1. Turn off and on the instrument /or rest the alarm manually from the Visograph. 2. Compressors and fans restart working algorithm.
LAC1	Minimum pressure (temperatur e) alarm compressor s for Circuit 1	IfAC1 = REL: Suction pressure or temperature< = SETC1-AL3 IfAC1 = ABS: Suction pressure or temperature< = AL3	Only signalling	Automatically: as soon as the pressure or temperature reaches: IfAC1 =REL: SETC1-AL3 + differential value. (differential = 0.3bar or 1°C) IfAC1 =ABS: AL3 + differential value. (differential = 0.3bar or 1°C)
LAF1	Minimum pressure (temperatur e) alarm fans section for Circuit 1	IfAC2 = REL: Condenser pressure or temperature ≤ SETF1-AL24 for timer AL26 IfAC2 = ABS: Condenser pressure or temperature ≤ AL24 for timer AL26	Only signalling	Automatically: as soon as the pressure or temperature reaches: IfAC2 =REL: SETF1-AL24 + differential value. (differential = 0.3bar or 1°C) IfAC2 =ABS: AL24 + differential value. (differential = 0.3bar or 1°C)

Code	Description	Cause	Action	Reset
HAC1	Maximum pressure (temperatur e) alarm compressor s for Circuit 1	IfAC1 = REL: Suction pressure or temperature ≥ SETC1+AL4 IfAC1 = ABS: Suction pressure or temperature ≥ AL4	Only signalling	Automatically: the pressure or temperature ≤ IfAC1 =REL: SETC1+AL4 - differential value. (differential = 0.3bar or 1°C) IfAC1 =ABS: AL4 - differential value. (differential = 0.3bar or 1°C)
HAF1	Maximum pressure (temperatur e) alarm fans section for Circuit 1	IfAC2 = REL: Condenser pressure or temperature > = SETF1+AL25 for AL26 delay IfAC2 = ABS: Condenser pressure or temperature > = AL25 for AL26 delay	If AL27 = yes The compressors Circuit 1 switch off with AL28 delay from 2 different steps	Automatically: the pressure or temperature ≤ IfAC2 =REL: SETF1+AL25 - differential value. (differential = 0.3bar or 1°C) IfAC2 =ABS: AL25 - differential value. (differential = 0.3bar or 1°C)
LL1	Liquid level alarm for Circuit 1	Proper digital Input enabled (the Input is configured as DICxx=109 Liquid level Circuit 1) After delay CDI1	Only signalling	Automatically as soon as the Input is disabled
PrSH1	Pre-alarm for superheat Circuit 1	Superheat 1 is ≤ ASH1 + ASH2 and ≥ ASH2	Only signalling	Automatic: when superheat exceeds ASH1 + ASH2 +hysteresis
ALSH1	Alarm for superheat Circuit 1	Superheat 1 is ≤ ASH2	Depends on ASH4	Automatic: when superheat exceeds ASH5 + ASH2
LPC1	Electronic pressure switch for low temperature/ pressure of Circuit 1	Pressure/temperature < AL21	Disable the compressors	Automatic: when the pressure/temperature exceeds AL21+differential
PR1	Suction probe Circuit 1 failure alarm	Suction Probe failure or out of range (e.g. the probe is configured as AICxx=1 NTC probe regulation suction Circuit 1)	The compressors are activated according to the AL14/AL15 parameters.	Automatically as soon as the probe restarts working.
PR3	Condensin g probe Circuit 1 failure alarm	Condensing Probe failure or out of range (e.g. the probe is configured as AICxx=3 NTC probe regulation condensing Circuit 1)	The fans are activated according to the AL31 parameters".	Automatically as soon as the probe restarts working.
Floodb ack 1	Floodback alarm Circuit 1	ASH2 >superheat (Suction pressure & Suction temperature) for 90 minutes	Only a warning: buzzer ON and alarm relay (91- Alarm) ON	Clear automatically superheat > ASH2
Booster alarm	Booster configuratio n alarm	No compressor of Circ. 1 available	Signalling only	Automatically as soon as a compressor of circuit 1 is available

Code	Description	Cause	Action	Reset
Circuit 1 alarm	Circuit 1 alarm	There is a serious alarm in circuit 1	Relay set as 115 is activated	Automatically as soon as as the serious alarm condition is no longer present
LOIL1	Low oil level alarm circuit 1	For solution 1~3, if DIC(i) = 161-Low oil level in oil seperator circuit1 activation for delay OIL12; For solution 4~5, if DIC(i) = 186-Low oil level in oil receiver circuit 1 activation for delay OIL12	During OIL12, according to OIL14 value => inverter to max speed (if present). Once alarm active, If OIL16=1, all the compressors including parallel compressors in circuit 1 off.	Automatically: as soon as the Input is disabled. All the compressors restart working according to regulation.
HOIL1	Hi oil level alarm circuit 1	DIC(i) = 162-Hi oil level in oil seperator circuit1 active after OIL24 cycles. If OIL24=0 we don't manage any warning.	signalling only	Manually: When the Input is disable: - Turn off and on the instrument /or reset the alarm manually from the Visograph.
		ALARMS CI	RCUIT 2	
LP2	Low pressure- switch alarm for Circuit 2	Low pressure switch Input (the Input is configured as DICxx=102 Low pressure Circuit 2)	All compressors of Circuit 2 are turned off. Fans unchanged.	Automatically if the number of activation are less than AL16 in the AL17 time when the Input is disable. - The compressor s restart working according to the working algorithm.
				Manually (if AL16 activation happened in the AL17 time When the Input is disable: - Turn off and on the instrument /or rest the alarm manually from the Visograph. - The compressors restart working according to the working algorithm.

Code	Description	Cause	Action	Reset
HP2	High pressure switch for Circuit 2 alarm	High pressure switch Input (the Input is configured as DICxx=100 High pressure Circuit 2)	 All compressors of Circuit 2 are turned off. All fans are of Circuit 2 turned on. 	Automatically if the number of activation are less than AL37 in AL38 time when the Input is disable.
				rs and fans restart working according to the working algorithm.
				Manually if AL37 activation happened in the AL38 time When the Input is disable: - Turn off and on the instrument /or rest the alarm manually from the Visograph.
				- Compressors and fans restart working according to the working algorithm.
LAC2	Minimum pressure (temperatur e) alarm compresso rs for Circuit 2	IfAC1 = REL: Suction pressure or temperature< = SETC2-AL6 IfAC1 = ABS: Suction pressure or temperature< = AL6	Only signalling	Automatically: as soon as the pressure or temperature reaches: IfAC1 =REL: SETC2-AL6 + differential value. (differential = 0.3bar or 1°C) IfAC1 =ABS: AL6 + differential value. (differential = 0.3bar or 1°C)
LAF2	Minimum pressure (temperatur e) alarm fans section for Circuit 2	IfAC2 = REL: Condenser pressure or temperature < = SETF2-AL32 for timer AL34 IfAC2 = ABS: Condenser pressure or temperature ≤ AL32 for timer AL34	Only signalling	Automatically: as soon as the pressure or temperature reaches: IfAC2 =REL: SETF2-AL32 + differential value. (differential = 0.3bar or 1°C) IfAC2 =ABS: AL32 + differential value. (differential = 0.3bar or 1°C)
HAC2	Maximum pressure (temperatur e) alarm compresso rs for Circuit 2	IfAC1 = REL: Suction pressure or temperature > = SETC2+AL7 IfAC1 = ABS: Suction pressure or temperature > = AL7	Only signalling	Automatically: the pressure or temperature ≤ IfAC1 =REL: SETC2+AL7 - differential value. (differential = 0.3bar or 1°C) IfAC1 =ABS: AL7 - differential value. (differential = 0.3bar or 1°C)

Code	Description	Cause	Action	Reset
HAF2	Maximum	IfAC2 = REL:	If AL35 = yes	Automatically:
	pressure	Condenser pressure or	The compressors	the pressure or temperature ≤
	(temperatur	temperature > =	Circuit 2 switch off with	IfAC2 =REL:
	e) alarm	SETF2+AL33	a delay from 2 different	SETF2+AL33 - differential
	fans	for AL34 delay	steps	value.
	section for		AL36	(differential = 0.3bar or 1°C)
	Circuit 2	IfAC2 = ABS:		
		Condenser pressure or	In case of parallel	IfAC2 =ABS:
		temperature > = AL33	compression enabled(at	AL33 - differential value.
		for AL34 delay	least one of parallel	(differential = 0.3bar or 1°C)
			compressor is	
			working):	
			- All the parallel	
			compressors are forced	
			to stop with safety	
			delays respected.	
			- The BT-PASS IONOWS	
			(set point GC20)	
112		Proper digital Input enabled	Oply signalling	Automatically as soon as
	alarm for	(the Input is configured as		the Input is disabled
	Circuit 2	DICxx=110		
	on out 2	Liquid level Circuit 2)		
		After delay CDI2		
PrSH2	Pre-alarm	Superheat2	Only signalling	Automatic: when superheat
-	for	is ≤ ASH1 + ASH9 and ≥	, , , , , , , , , , , , , , , , , , ,	exceeds ASH1 + ASH9
	superheat	ASH9		+hysteresis
	Circuit 2			-
ALSH2	Alarm for	Superheat2 is ≤ ASH9	Depends on ASH11	Automatic: when superheat
	superheat			exceeds ASH12 + ASH9
	Circuit 2			
LPC2	Electronic	Pressure/temperature < AL23	disables the	Automatic: when the
	pressure		compressors	pressure/temperature
	switch for			exceeds AL23+differential
	tomporatur			
	of Circuit 2			
PR2	Suction	Suction Probe failure or out of	The compressors are	Automatically as soon as
	probe	range (e.g. the probe is	activated according to	the probe restarts working.
	Circuit 2	configured as	the AL18 parameters.	5
	failure	AICxx=2		
	alarm	NTC probe regulation suction		
		Circuit 2)		
PR4	Condensin	Condensing Probe failure or	The fans are activated	Automatically as soon as
	g probe	out of range (e.g. the probe is	according to the AL39	the probe restarts working.
	Circuit 2	configured as	parameters.	
	failure	AICxx=4		
	alarm	NIC probe regulation		
Floodh	Floodbook	ASH0 Seuporboot (Sustion	Only a warning huzzar	Clear automatically
riooub	alarm	AGHS >Superneal (Suction	Only a warning: buzzer	
	Circuit 2	temperature) for 90 minutes	Alarm) ON	Superilear > AOI 13
Circuit 2		There is a serious alarm in circuit ?	Relay set as 116 is activated	Automatically as soon as the
alarm			i tolay out as i to is dutivated	serious alarm condition is no longer
				present

Code	Description	Cause	Action	Reset
LOIL2	Low oil level alarm circuit 2	For solution 1~3, if DIC(i) = 163-Low oil level in oil seperator circuit2 activation for delay OIL13 ; For solution 4~5, if DIC(i) = 187-Low oil level in oil receiver circuit 2 activation for delay OIL 13	During OIL13, according to OIL15 value => inverter to max speed (if present). Once alarm active, If OIL17=1 all the compressors	Automatically: as soon as the Input is disabled. All the compressors restart working according to regulation.
		douvalent for delay one to	in circuit 2 off.	
HOIL2	Hi oil level alarm circuit 2	DIC(i) = 168-Hi oil level in oil seperator circuit2 active after OIL24 cycles. If OIL24=0 we don't manage any warning.	signalling only	Manually: When the Input is disable: - Turn off and on the instrument /or reset the alarm manually from the Visograph.
FA04	0	Compress		A
EA01 EA024 (for each compres sor)	Compressor safeties alarm for Oil switch load	Cli switch load input activation. (the Input is configured as DICxx=1 Compressor oil pressostate compressor 1 Circuit 1) NOTE: with step compressors Input for each compressor has to be used.	I ne corresponding compressor is turned off (with step compressors all relays referred to the Input are disabled).	Automatically as soon as the Input is disabled.
ETO1 ETO24 (for each compres sor)	Compressor safeties alarm for Thermal switch load	Thermal switch load Input activation. (the Input is configured as DICxx=3 Thermal Safety Compressor Circuit 1) NOTE: with step compressors Input for each compressor has to be used.	The corresponding compressor is turned off (with step compressors all relays referred to the Input are disabled).	Automatically as soon as the Input is disabled.
EPO1E PO24 (for each compres sor)	Compressor safeties alarm for Pressure switch load	Pressure switch load Input activation. (the Input is configured as DICxx=2 Compressor safety pressostate Circuit 1) NOTE: with step compressors Input for each compressor has to be used.	The corresponding compressor is turned off (with step compressors all relays referred to the Input are disabled).	Automatically as soon as the Input is disabled.
MANT	Compresso rs maintenanc e alarm	A compressor has worked for the time set in the AL10 parameter	Only signalling	Manually: reset the running hour of the compressor (see par 6.1)
Comp start[1~ 15]	Compressor cycle limit	Compressor CT cycle counter > SL14 The CT cycle counter will come from Coresense by reading register address "007E" (compressor start times) When this value > SL14 individual compressor is locked out until cycle count is reset.	Lockout individual compressor	No reset.

Code	Description	Cause	Action	Reset
OIL DIFF L/O	High separator differential switch alarm	contact closure from hi oil separator lockout input	Lockout all compressors when DI true > 5 min	Automatically when DI true < 5 min As soon as the Input is disabled the alarm is reset. The compressors restart working according to the working algorithm. Manually when DI true ≥ 5 min When the Input is disable, it also need turn off and on the instrument /or rest the alarm manually from the Visograph or remote. The compressors restart working according to the working algorithm.
		GENERIC	CALARMS	
P1	probe failure	Probe 1 failure	signalling only	Automatically as soon as the
P2	probe failure alarm	Probe 2 failure	signalling only	Automatically as soon as the probe restarts working.
P3	probe failure alarm	Probe 3 failure	signalling only	Automatically as soon as the probe restarts working.
P4	probe failure alarm	Probe 4 failure	signalling only	Automatically as soon as the probe restarts working.
P5	probe failure alarm	Probe 5 failure	signalling only	Automatically as soon as the probe restarts working.
P6	probe failure alarm	Probe 6 failure	signalling only	Automatically as soon as the probe restarts working.
P7	probe failure alarm	Probe 7 failure	signalling only	Automatically as soon as the probe restarts working.
P8	probe failure alarm	Probe 8 failure	signalling only	Automatically as soon as the probe restarts working.
P9	probe failure alarm	Probe 9 failure	signalling only	Automatically as soon as the probe restarts working.
P10	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P11	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P12	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P13	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P14	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P15	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P16	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P17	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P18	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P19	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P20	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.

Code	Description	Cause	Action	Reset
P21	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P22	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P23	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P24	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P25	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P26	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P27	probe failure alarm	Probe 10 failure	signalling only	Automatically as soon as the probe restarts working.
P28	probe failure alarm	Probe 28 failure	Only signalling	Automatically as soon as the probe restarts working.
P29	probe failure alarm	Probe 29 failure	Only signalling	Automatically as soon as the probe restarts working.
P30	probe failure alarm	Probe 30 failure	Only signalling	Automatically as soon as the probe restarts working.
P31	probe failure alarm	Probe 31 failure	Only signalling	Automatically as soon as the probe restarts working.
P32	probe failure alarm	Probe 32 failure	Only signalling	Automatically as soon as the probe restarts working.
P33	probe failure alarm	Probe 33 failure	Only signalling	Automatically as soon as the probe restarts working.
P34	probe failure alarm	Probe 34 failure	Only signalling	Automatically as soon as the probe restarts working.
P35	probe failure alarm	Probe 35 failure	Only signalling	Automatically as soon as the probe restarts working.
BURST	Burst disc alarm	DIC(i) = 150 activation	Only a warning: buzzer ON and alarm relay (91- Alarm) ON	DIC(i) = 150 deactivation
PHASE	Phase fail alarm	DIC(i) = 151 activation	Only a warning: buzzer ON and alarm relay (91- Alarm) ON	DIC(i) = 151 deactivation
EXT[i]	External alarm [i]	DIC(i) = 152 (or 153-154-155) activation	Only a warning: buzzer ON and alarm relay (91- Alarm) ON	DIC(i) = 152 (or 153-154- 155) deactivation
GLeak1 [2-3-4]- PreAlr	Gas Leak pre-alarm 1 [2-3-4]	If value of Gas leak detector 1 [2-3-4] probe > GLD1 [GLD6- GLD11-GLD16] and Gas leak detector 1 [2-3-4] probe < GLD2 [GLD7-GLD12-GLD17].	Relay set in GLD4 [GLD9-GLD14-GLD19] on	When value of Gas leak detector 1 [2-3-4] probe ≤ GLD1- GLD3[GLD6- GLD8;GLD11- GLD13;GLD16-GLD18]
GLeak1 [2-3-4]- Alarm	Gas Leak alarm 1 [2- 3-4]	If value of Gas leak detector 1 [2-3-4] probe > GLD2 [GLD7- GLD12-GLD17]	Relay set in GLD5 [GLD10-GLD15-GLD20] on	When value of Gas leak detector 1 [2-3-4] probe ≤ GLD2- GLD21 [GLD7- GLD22;GLD12- GLD23;GLD17-GLD24]

EMOA- lip Expansion offline alarm- liPX106D The expansion module communication by can bus. Only signalling The communication is recovered automatically. EMOA- 215D Expansion module The expansion module iPX215D is used and loses offline alarm- liPX215D Only signalling The communication is recovered automatically. AL_AO Fan safeties alarm- liPX215D Safety switch load Input activation. Only signalling Automatically as soon as the Input is disabled. NVO safeties for Safety switch load Input alarm for load Compressor with Inverter The corresponding is turned off. Automatically as soon as the Input is disabled. NVO surver Inverter for Oli switch alarm for load Compressor with Inverter or suction alarm for (the Input is configured as inverter or suction alarm for (the Input is configured as inverter is surver The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NVT Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NVT Inverter suction inverter The inverter ICL suction 1 The inverter ICL is suction 1 Automatically as soon as the Input is disabled. NVT Inverter suction 1 DICC(i) = 140 [141] activation inverter Only signalling inve	Code	Description	Cause	Action	Reset
106D module alarm. IPX106D IPX106D is used and loses communication by can bus. recovered automatically. EMOA- 215D Expansion module alarm. IPX215D is used and loses communication by can bus. Only signalling The communication is recovered automatically. AL_AO fan Fan safeties afarm Safety switch load Input activation. (the Input is configured as DCx=73 The corresponding fan is turned off. Automatically as soon as the Input is disabled. INVO for safeties inverter of is writch for safeties inverter safeties inverter Oil switch load Input activation. Di load compressor with Inverter Alarms Automatically as soon as the Input is disabled. INVT Inverter outswitch load Input activation. Suction alarm for inverter Oil switch load Input activation. DCx=115 The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter safeties inverter Thereasure switch load Input activation. Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Thereasure switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Pressure switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVF	EMOA-	Expansion	The expansion module	Only signalling	The communication is
offline IPX106D communication by can bus. IPX215D Communication by can bus. IPX215D is used and loses communication by can bus. IPX215D is used and loses communication by can bus. Only signalling The communication is recovered automatically. AL_AO (or each fan) Fan Safeties airm Safety switch load Input activation. (the Input is configured as DICxx=73 Fan 1 safety Circuit 1) Only signalling Automatically as soon as the Input is disabled. NVO (for Suction alarm for (hor safeties sitverter VI Inverter OII switch Ioad Inverter OII switch load Input activation. (the Input is configured as DICxx=115 Compressor oil Inverter switch load Inverter succes on Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NVT Inverter switch load (for univerter 1 The corresponding inverter is turned off. Automatically as soon as the Input is disabled. Nutree Succion 1 (for univerter 1 Inverter Safeties switch load (for the input is configured as Dicx=116 DicX:=116 Safety Inverter Safety Inverter 12 [2] has worked for the time set in the AL10 parameter Only signalling inverter is turned off. Automatically as soon as the Input is disabled. Nureter Safeties Safety Inver	106D	module	IPX106D is used and loses		recovered automatically.
Inverter (or safeties fan) Safety switch load Input activation. Only signalling The communication is recovered automatically. NVD Fan safeties alarm (or safeties fan) Safety switch load Input activation. The corresponding fan the input is configured as DICxx=73 Fan 1 safety Circuit 1) Automatically as soon as the input is disabled. NVO Inverter Oil switch Ioad Suction alarm for NVT Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the input is disabled. NVT Inverter Oil switch Ioad Inverter Suction alarm for inverter Thermal Switch load Input is configured as DICxx=115 The corresponding inverter is turned off. Automatically as soon as the linput is disabled. NVT Inverter Safeties suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the linput is disabled. INVP switch load for maintenanc suction suction suction suction alarm for inverter Inverter Safeties suction 1 [2] Inverter The inverter 1[2] has worked off. Automatically as soon as the linput is disabled. NVP suction alarm for inverter Inverter 1 [2] Inverter The inverter 1[2] has worked off. Only signalling (nor of the inverter1 [2] (see par 6.1) Nutree suction 1 [2] Inverter DIC(i) = 140 [141] activation alarm ride 0N DOC(i) = 2 [4] is turned off. Automatically as soon a		offline	communication by can bus.		
EMOAL 215D The expansion module of file alarm The expansion module IPX215D is used and loses communication by can bus. Only signalling The communication is recovered automatically. AL_AO (arm Fan safeties alarm Safety switch load Input activation. Only signalling Automatically as soon as is turned off. NVO (arc) Fan safeties alarm Safety switch load Input activation. The corresponding fan is turned off. Automatically as soon as the Input is disabled. NVO (arc) Inverter fan) Oil switch load Input activation. The corresponding inverter of Iswitch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NVV (or safeties sativation inverter Inverter safeties sativation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NVVP (for safeties sativation. Inverter suction alarm for the Input is configured as DICxx=117 The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NVP (for switch load Inverter Therear Safety Inverter suction alarm for the Input is disabled. Automatically as soon as the Input is disabled. NVTI (INVP (for switch load Inverter 1 The inverter 1 (2) has worked of the Input is disabled. Only signalling hour of the inverter 1 (2) (see par 6.1) NATI (IPX106D			
215D module offline alarm- iPX215D is used and loses communication by can bus. Converse and the inverter Converse and the is unred off. Automatically as soon as the input is disabled. AL_AO Fan safeties alarm Safety switch load input activation. (the input is configured as DCxx=73 Fan 1 safety Circuit 1) The corresponding fan is turned off. Automatically as soon as the input is disabled. NVO Inverter fan) Oil switch load Input activation. (the input is configured as DCxx=115 Compressor oil Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the input is disabled. INVT Inverter safeties suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the input is disabled. INVT Inverter safeties suction alarm for inverter Pressure suction alarm for inverter Pressure witch load input activation. inverter Pressure witch load input activation. inverter Pressure witch load input activation circuit 1) The corresponding inverter is turned off. Automatically as soon as the input is disabled. INVP (for suction alarm for inverter Pressure suction 1 (for maintenance inverter Pressure suction 1 (2) Inverter 1 DIC(i) = 140 [141] activation parameter Only signalling only a varing: buzzer ON and alarm relé ON Manually: reset the running hour of the inverter 1[2] (see par 6.1) Inverter sy DIC(i) = 140 [141] activation inverter Only a varing: buzzer ON and alarm relé ON Automatically when 15%-Cliquid ever48%	FMOA-	Expansion	The expansion module	Only signalling	The communication is
offline alarm- (IPX215D communication by can bus. Fan Alarm AL_AO (ach fan) Fan safeties alarm (the input is configured as DICXx=73 Fan 1 safety Circuit 1) The corresponding fan is turned off. Automatically as soon as the input is disabled. NVO (tor safeties Suction inverter Inverter Oil switch Ioad Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the input is disabled. NVT Inverter Oil switch Ioad Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the input is disabled. NVT Inverter Suction alarm for (for safeties suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the input is disabled. INVP (for safeties suction alarm for (for suction alarm for (for suction alarm for (for the input is configured as DICxx=116) The corresponding inverter is turned off. Automatically as soon as the input is disabled. NMTI (inverter 1 (for suction 2 (for Suction 1 inverter suction 2 inverter suction 1 inverter su	215D	module	IPX215D is used and loses	Only signaling	recovered automatically.
alarm- IPX215D Fan Alarm AL_AO Fan safeties fan) Fan safeties alarm Safety switch load Input activation. (the Input is configured as DICxx=73 Fan 1 safety Circuit 1) The corresponding fan is turned off. Automatically as soon as the Input is disabled. INVO fan Inverter Oil switch load Input activation. Oil switch load Input (the Input is configured as DICxx=115 DICxx=115 The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Thermal Switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Thermal Safety Inverter switch load Inverter Pressure inverter Pressure switch load Inverter Suction alarm for (for suction alarm for (the Input is configured as DICxx=116 DICxx=117 The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP Inverter 1 (or suction alarm for (for suction alarm for (for suction 1 inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. Inverter 1 (for Suction 1 inverter suction 1 inverter suction 1 inverter suction 1 inverter suction 1 inverter suction 1 inverter suction 4 inverter suction 1 inverter suction 1 inverter suct		offline	communication by can bus.		· · · · · · · · · · · · · · · · · · ·
IPX215D Fan Alarm AL_AO (for each fan) Fan safeties alarm each fan) Safety switch load Input activation. (the Input is configured as DICxx=73 Fan 1 safety Circuit 1) The corresponding is turned off. Automatically as soon as the Input is disabled. INVO (for safeties Suction alarm for (for safeties suction clicuit 1) Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Suction alarm for (for safeties suction clicuit 1) Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter suction clicuit 1) Thermal Switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter suction alarm for (for safeties suction clicuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVTE (for suction e alarm inverter Pressure switch load Input activation. The corresponding inverter suction Clicuit 1) Manually: reset the running hour of the inverter 1(2) has worked for the time set in the AL10 parameter Only signalling hour of the inverter 1(2) (see par 6.1) Manually: reset the running hour of the inverter 1(2) (see par 6.1) Inverter (for Suction 1 inverter DIC(i) = 140 [141]		alarm-			
Fan Alarm Automatically as soon as fan) Automatically as soon as bDCxx=73 Fan 1 safety Circuit 1) Compressor with Inverter Alarms NVO (for safeties inverter 0 (is witch load Automatically as soon as inverter 0 (is witch load Compressor with Inverter Alarms Nuton inverter 0 (is witch load Automatically as soon as inverter 0 inverter 3 suction inverter 7 thermal switch load input activation. NUT Inverter safeties inverter 7 thermal switch load Input activation. Automatically as soon as the Input is disabled. NUT INVT (for safeties inverter 7 thermal safety Inverter switch load The corresponding inverter 9 ressure bucks on Circuit 1) INVP (for safeties switch load Automatically as soon as the Input is disabled. NUP Inverter switch load Safety Inverter Souction 1 (the Input is configured as inverter 9 ressure switch load Configured as DICxx=116 NUP Inverter 1 The inverter 1		IPX215D			
AL_AO Fan safeties alarm Safety switch load Input activation. The corresponding fan is turned off. Automatically as soon as the Input is disabled. INVO (arrow safeties Suction alarm for inverter Oil switch) Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVO (for safeties inverter Oil switch) Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter oil switch load Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter or safeties inverter Thermal switch load inverter The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP (for safeties inverter Inverter switch load inverter Thermal Safety Inverter suction alarm for inverter 1 The inverter 1(2) has worked off. Only signalling Automatically as soon as the Input is disabled. MANTI Inverter DIC(i) = 140 [141] activation inverter DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Inverter Safety Inverter DIC(i) = 140 [141] activation inverter DOC(i) = 3 or 12, [5] or [14] to 0V or 4mA Automatially when 15%-Cliquid alarm rele ON			Fan	Alarm	1
(for fan) activation. (the lnput is configured as DICxx=73 Fan 1 safety Circuit 1) is turned off. The input is disabled. INVO (for safeties inverter Oil switch load Input activation. (the Input is configured as DICxx=115 Compressor oil Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT (for safeties suction alarm for (for safeties inverter Thermal switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT (for safeties inverter Thermal switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP (for suction alarm for suction Circuit 1) Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP (for suction alarm for suction alarm for suction alarm for inverter 1 The inverter 1(2) has worked for the time set in the AL10 parameter Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter (for suction 1 inverter) DIC(i) = 140 [141] activation inverter) DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. LIQ LVL (aarm Suction 1 inverter) DIC(i) = 140 [141] activation inverter) DOC(i) = 3 or 12, [5] or [14] to 0V or 4mA Automatially when 15% <liquid level<8%)</liquid 	AL_AO	Fan safeties	Safety switch load Input	The corresponding fan	Automatically as soon as
each fan) Internet Dicx=73 Fan 1 safety Circuit 1) Compressor with Inverter Alarms INVO (for Suction inverter Oil switch load Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT (for Suction alarm for inverter Suction suction alarm for inverter Oil switch Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT (for safeties suction suction suction inverter Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP (for suction inverter Inverter safeties switch load for the imput is configured as DICxx=116 switch load for the time set in the AL10 parameter The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NNP (for suction inverter Inverter 1 1 The inverter 1(2) has worked off. AOC (I) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Manually: reset the running hour of the inverter 1[2] (see par 6.1) Inverter s) DIC(i) = 140 [141] activation inverter s) DOC(i) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatially when 15%-Liquid level<89% ELQ LVL for alarm Reciever level alarm 80%<-Liquid level input <15% for dism Only a warning: buzzer ON and alarm relé ON <t< th=""><th>(for</th><th>alarm</th><th>activation.</th><th>is turned off.</th><th>the Input is disabled.</th></t<>	(for	alarm	activation.	is turned off.	the Input is disabled.
Interver (for surverter) Dicx.x=1/3 Fan 1 safety Circuit 1) Compressor with Inverter Alarms INVO (for safeties suction alarm for inverter) Oil switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Oil switch load Thermal switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter safeties suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP (for safeties suction alarm for inverter Pressure switch load inverter Pressure Pressure switch load inverter Pressure switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. MANTI Inverter Suction inverter Inverter 1 Pressure switch load Input activation. The corresponding inverter Suction 1 (the Input is configured as Dicxx=116 Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) MANTI Inverter Inverter 2 DIC(i) = 140 [141] activation 1 and 2 Inverter DIC(i) = 3 or 12, [5] or [14] to 0V or 4mA Automatically when 15% <liquid eds LIQ LVL Recever level alarm <</liquid 	each		(the input is configured as		
INVO (for safeties inverter load Oil switch load Input activation. (the Input is configured as DICxx=115 Compressor oil Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT (for safeties suction alarm for furverter Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT (for safeties inverter Inverter suction Circuit 1) Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP (for suction alarm for inverter Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. MANTI Inverter Inverter switch load Pressure switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. MANTI Inverter Inverter 1 The inverter1 [2] has worked for the time set in the AL10 parameter Only signalling hour of the inverter1 [2] (see off. Manually: reset the running hour of the inverter1 [2] (see off. Inverter Suction 1 [2] Inverter DIC(i) = 140 [141] activation inverter DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Inverter Barm (for contact dosure from reciever runture separator element B0%	ian)		Eap 1 safety Circuit 1)		
INVO (for suction inverter) Oil switch load input atrvation. Compressor with Inverter Alarms Automatically as soon as the Input is disabled. Suction inverter) Iol switch load input body (for safeties inverter) Oil switch load input body (for safeties inverter) Oil switch load input body (for safeties suction inverter) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT (for safeties inverter suction inverter) Inverter switch load alarm for inverter suction alarm for inverter) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP (for suction suction suction suction inverter suction inverter suction inverter) The inverter solicxx=116 blC(i) = 140 [141] activation inverter s) Only signalling inverter is turned off. (for suction inverter s) Manually: reset the running hour of the inverter1 [2] (see off. ACC (i) = 2 [4] is turned off. ACC (i) = 3 or 12, [5] or [14] to 0V or 4mA Inverter s) DIC(i) = 140 [141] activation inverter s) DOC(i) = 2 [4] is turned off. ACC (i) = 3 or 12, [5] or [14] to 0V or 4mA Automatially when 15% <liquid ead ad alarm relé ON and alarm relé ON and alarm relé ON ULDEFF blase arator Contact closeure from reciever rupture eaperator input > 1 minute</liquid 			rain r salety circuit r)		
INVO (for safeties Suction inverter Cill switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Oil switch load Compressor oil Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Thermal Switch load Input safeties Thermal Switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVF Inverter Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NANTI (for suction inverter Inverter 1 Pressure The inverter 1[2] has worked of the Input is configured as DICxx=116 safety Inverter Suction Circuit 1) Only signalling Manually: reset the running hour of the inverter 1[2] (see par 6.1) Inverter Suction 1 [2] Inverter DIC(i) = 140 [141] activation suction at and zi inverter DOC(i) = 2 [4] is turned off. AOC (i) = 3 or 12, [5] or [14] to 0V or 4mA Automatically when 15% <liquid level<89% LQ LVL atarm Recever level atarm 80%<liquid <15%="" for<br="" input="" level="">ad atarm rel</liquid></liquid 			Compressor wit	h Inverter Alarms	
(for Suction inverter safeties oil switch load activation. (the Input is configured as DICxx=115 Compressor oil Inverter suction Circuit 1) inverter is turned off. the Input is disabled. INVT (for Suction alarm for inverter Inverter safeties switch load Thermal switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT (for safeties suction Circuit 1) Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP (for suction inverter Inverter Pressure switch load Input safeties activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVPT (for suction inverter Inverter 1 Pressure switch load for the time set in the AL10 parameter Only signalling Manually: reset the running hour of the inverter1 [2] (see off. AOC (I) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. Inverter s) DIC(i) = 140 [141] activation suction and alarm rele ON Only a warning: buzzer ON and alarm rele ON Automatially when 15% <liquid level<89% UQ LVL Recever level alarm Rec Flash tank high pressure separator element switch alarm Contact closure from reciever rupture ontact closure from change oil only a warning: buzzer ON and alarm rele ON Automatically when DI is false</liquid 	INVO	Inverter	Oil switch load Input	The corresponding	Automatically as soon as
Suction alarm for inverter (the Input is configured as compressor oil Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter Suction alarm for since the Input is configured as inverter is turned off. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP Inverter Switch load Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP Inverter Safeties activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP Inverter Pressure Switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. NV1 [2] Inverter 1 The inverter 1[2] has worked for the time set in the AL10 parameter Only signalling hour of the inverter1 [2] (see par 6.1) Inverter Suction 1 DIC(i) = 140 [141] activation inverter DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Suction 1 and 2 inverter DIC(i) = 140 [141] activation inverter DOC(i) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. Inverter Soution 1 alarm Contact dosure from reciever rupture of input <15% for alarm relé ON </th <th>(for</th> <th>safeties</th> <th>activation.</th> <th>inverter is turned off.</th> <th>the Input is disabled.</th>	(for	safeties	activation.	inverter is turned off.	the Input is disabled.
Inverter Diskurtich load Dickx=115 Compressor oil Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVT Inverter safeties Thermal switch load Input activation. (the Input is configured as DiCxx=117 The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP Inverter safeties Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. INVP Inverter safeties Pressure switch load Input activation. (the Input is configured as DICxx=116 The corresponding inverter is turned off. Automatically as soon as the Input is disabled. MANTII Inverter Inverter 1 mintenance suction inverter The inverter1 [2] has worked for the time set in the AL10 parameter Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter (for Suction 1 and 2 inverter s) DIC(i) = 140 [141] activation 1 and 2 inverter DIC(i) = 140 [141] activation 1 alarm DOC(i) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to OV or 4mA Automatically when 15% <liquid level<89% LIQ LVL Reciever level alarm 80%<liquid <15%="" for<br="" input="" level="">alarm Only a warning: buzzer ON and alarm relé ON Automatically when 15%<liquid level<89% REC FLOAT Flash tank high pressure element <</liquid </liquid></liquid 	Suction	alarm for	(the Input is configured as		
Joad Compression inverter Suction Circuit 1) Inverter INVT Inverter (for safeties switch load DiCxx=117 Suction I alarm for Thermal Safety Inverter switch load Thermal Safety Inverter switch load Pressure switch load Input activation. Inverter Pressure switch load Input activation. suction Circuit 1) The corresponding inverter is turned off. Inverter Pressure switch load Input activation. suction Circuit 1) The corresponding inverter is turned off. Inverter Pressure switch load Input activation. switch load Safety Inverter Suction Circuit 1 MANTI Inverter 1 The inverter 1 [2] has worked for the time set in the AL10 Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter 1 DIC(i) = 140 [141] activation Suction 1 DIC(i) = 140 [141] activation Suction 1 DIC(i) = 140 [141] activation Suction 1 CI(I) = 140 [141] activation Suction 1 DIC(i) = 140 [141] activation Suction 1 CI(I) = 0 [140 [141	inverter	Oil switch	DICXX=115 Comprospor oil Invertor		
INVT (for suction inverter Inverter safeties switch load Internal switch load Suction (the lnput is configured as DICxx=117 The corresponding inverter is turned off. Automatically as soon as the lnput is disabled. INVP (for suction inverter Inverter safeties safeties suction Circuit 1) Pressure switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the lnput is disabled. NVP (for suction inverter Inverter 1 Pressure switch load Pressure switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the lnput is disabled. MANTI inverter Inverter 1 Pressure switch load Safety Inverter Suction Circuit 1) Only signalling for the time set in the AL10 parameter Only signalling for the time set in the AL10 parameter Manually: reset the running hour of the inverter1 [2] (see off. Inverter s) Suction 1 [2] Inverter s) DIC(i) = 140 [141] activation 1 and 2 inverter DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. UIQ LVL alarm Reciever level alarm 80% <liquid <15%="" input="" level="" or<br="">and alarm relé ON Only a warning: buzzer ON and alarm relé ON Automatially when 15%<liquid level<89% REC FLOAT Flash tank high pressure disc contact closeure from reciever rupture disc Only a warning: buzzer ON and alarm relé</liquid </liquid>	,	IUau	Suction Circuit 1)		
(for Suction inverter safeties alarm for Switch load activation. (the Input is configured as DICxx=117 inverter is turned off. the Input is disabled. INVP (for suction alarm for inverter Inverter suction Circuit 1) Thermal Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. MANTI NV1 [2] (for suction inverter Inverter 1 switch load The inverter 1 [2] has worked for the time set in the AL10 parameter Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter Suction 1 inverter DIC(i) = 140 [141] activation inverter DOC(i) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. LiQ LVL Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">disc Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<89% REC HI Flash tank high pressure disc contact closure from reciever rupture disc Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite false</liquid </liquid>	INVT	Inverter	Thermal switch load Input	The corresponding	Automatically as soon as
Suction inverter alarm for inverter (the Input is configured as DICxx=117 switch load DICxx=117 Diction Circuit 1) INVP Inverter Safety Inverter suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. suction alarm for inverter Pressure switch load Safety Inverter Suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. MANTI Inverter 1 The inverter 12] has worked for the time set in the AL10 Only signalling inverter 12] (see par 6.1) Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter Suction 1 DIC(i) = 140 [141] activation inverter DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Inverter Suction 1 DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Inverter Suction 1 DIC(i) = 140 [141] activation DOC(i) = 3 or 12, [5] or [14] to 0V or 4mA Automatically when 15% <liquid 10="" 45m="" ad="" al="" alarm="" in="" level="" on<="" or="" rele="" segment="" set="" td="" the=""> Inverter Suction 1 B0%<liquid 0n="" <15%="" ad="" alarm="" and="" for="" input="" level="" on<="" rele="" td=""> Automatially when 15%<liquid level<89%<="" td=""> LiQ LVL Reciever level 80%<liquid l<="" th=""><th>(for</th><th>safeties</th><th>activation.</th><th>inverter is turned off.</th><th>the Input is disabled.</th></liquid></liquid></liquid></liquid>	(for	safeties	activation.	inverter is turned off.	the Input is disabled.
Inverter Switch load DICxx=117 Thermal Safety Inverter suction Circuit 1) Automatically as soon as the Input is disabled. INVP (for suction inverter Inverter Pressure switch load Pressure switch load Input activation. (the Input is configured as DICxx=116 Safety Inverter Suction Circuit 1) The corresponding inverter is turned off. Automatically as soon as the Input is disabled. MANTI Inverter Inverter 1 [2] The inverter1 [2] has worked of the time set in the AL10 maintenanc suction inverter Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter suction inverter DIC(i) = 140 [141] activation Suction 1 and 2 inverter s) DOC(i) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. ULQ LVL Recever level alarm 80% <liquid <15%="" for<br="" input="" level="">disc Only a warning: buzzer ON and alarm relé ON Automatially when 15%<liquid level<89%</liquid </liquid>	Suction	alarm for	(the Input is configured as		
switch load Thermal Safety Inverter suction Circuit 1) Automatically as soon as the Input is disabled. INVP (for inverter Inverter safeties Pressure outcation. Automatically as soon as the Input is disabled. MANTI Inverter Inverter 1 switch load Safety Inverter Suction Circuit 1) Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) MANTI Inverter Inverter 1 [2] DICx=116 Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter Suction 1 [2] DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Inverter suction inverter Suction 1 [2] Inverter s) DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. ULQ LVL Receiver level alarm Receiver level disc 80% <liquid <15%="" for<br="" input="" level="">disc Only a warning: buzzer ON and alarm relé ON Automatially when 15%<liquid level<89%</liquid </liquid>	inverter	Thermal	DICxx=117		
Suction Circuit 1) INVP Inverter Pressure switch load Input activation. The corresponding inverter is turned off. Automatically as soon as the Input is disabled. Suction inverter alarm for Pressure The input is configured as DICxx=116 The corresponding inverter is turned off. Automatically as soon as the Input is disabled. MANTI NV1 [2] (for suction suction inverter Inverter 1 The inverter 1[2] has worked for the time set in the AL10 parameter Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter 2 Suction 1 [2] Inverter DIC(i) = 140 [141] activation for suction 1 and 2 inverter DIC(i) = 140 [141] activation for suction DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. ULQ LVL Receiver level alarm Reciever level disc 80% <liquid <15%="" for<br="" input="" level="">disc Only a warning: buzzer ON and alarm relé ON Automatially when 15%<liquid level<89%</liquid </liquid>)	switch load	Thermal Safety Inverter		
INVP Inverter (for safeties aution. Pressure activation. Pressure activation. Pressure activation. Automatically as soon as inverter is turned off. MANTI NV1 [2] Inverter 1 (2] Safety Inverter Suction Circuit 1) The inverter is turned off. Manually: reset the running hour of the inverter1 [2] has worked for the time set in the AL10 parameter Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter suction inverter Suction 1 2 [2] DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Inverter s) DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. LIQ LVL alarm Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">disc Only a warning: buzzer ON and alarm relė ON Automatially when 15%<liquid level<89% OIL DIFF HI Change separator element switch alarm contact closure from ceiver rupture disc Only a warning: buzzer ON and alarm relė ON Must be manually cleared onsite false</liquid </liquid>	14.11/D		suction Circuit 1)	-	A. (
Close Survey of the input is configured as DICxx=116 Inverter is fulled off. MANTI Inverter 1 The input is configured as DICxx=116 Only signalling Manually: reset the running hour of the inverter1 [2] (see maintenanc e alarm inverter MANTI (12) Inverter 1 The inverter 1 [2] has worked for the time set in the AL10 Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter Suction 1 DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the input is disabled. 1 and 2 Inverter Salarm DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the input is disabled. 1 and 2 Inverter Solution DIC(i) = 140 [141] activation DOC(i) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the input is disabled. 1 and 2 Inverter Solution Solution Only a warning: buzzer ON and alarm relè ON Automatially when 15% <liquid alarm="" and="" from="" level="" on="" on<="" onsite="" reciever="" relè="" rupture="" td=""> 1 DID LID IFF Change separator element switch alarm Contact closuer from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite false</liquid>	INVP (for	Inverter	Pressure switch load input	The corresponding	Automatically as soon as
Suction Pressure switch load DiCxx=116 Safety Inverter Suction Circuit 1) Only signalling Manually: reset the running hour of the inverter1 [2] (see par 6.1) MANTI NV1 [2] (for suction inverter Inverter 1 [2] maintenanc e alarm DIC(i) = 140 [141] activation [2] Inverter Only signalling for the time set in the AL10 parameter Manually: reset the running hour of the inverter1 [2] (see par 6.1) Inverter (for Suction 1 and 2 inverter s) DIC(i) = 140 [141] activation 2 alarm DOC(i) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. V Varings Varings Varings LIQ LVL Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">disc Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<89% REC FLOAT Flash tank high pressure element switch alarm contact closuer from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite false</liquid </liquid>	suction	alarm for	(the Input is configured as	inverter is turned on.	the input is disabled.
switch load Safety Inverter Suction Circuit 1) MANTI Inverter Inverter 1 [2] Safety Inverter Suction Circuit 1) Only signalling Manually: reset the running hour of the inverter 1[2] (see par 6.1) NV1 [2] [2] The inverter 1 [2] The inverter 1 parameter Only signalling Manually: reset the running hour of the inverter 1[2] (see par 6.1) Inverter (for suction inverter 2 alarm DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. V Vertice alarm Solution 1 45min Only a warning: buzzer ON and alarm relè ON Automatially when 15% <liquid level<89% REC FLOAT Flash tank high pressure element switch alarm contact closure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite false</liquid 	inverter	Pressure	DICxx=116		
MANTI NV1 [2] Inverter 1 [2] The inverter 1 for the time set in the AL10 parameter Only signalling Manually: reset the running hour of the inverter 1 [2] (see par 6.1) Inverter suction inverter) Ealarm DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. Suction 1 2 (for Suction 1 and 2 inverter s) DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. LIQ LVL Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">disc Only a warning: buzzer ON and alarm relė ON Automatially when 15%<liquid level<89% REC FLOAT Flash tank high pressure element switch alarm contact closuer from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite false</liquid </liquid>)	switch load	Safety Inverter Suction Circuit		
MANTI NV1 [2] Inverter 1 [2] The inverter 1 for the time set in the AL10 parameter Only signalling Manually: reset the running hour of the inverter 1 [2] (see par 6.1) suction inverter } e alarm DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Inverter 2 linverter s) Zalarm DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. Inverter 2 alarm Zalarm DIC(i) = 140 [141] activation DOC(i) = 3 or 12, [5] or [14] to 0V or 4mA Automatically when 15% LIQ LVL alarm Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">disc Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<88% REC FLOAT Flash tank high pressure element switch alarm contact closure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite false</liquid </liquid>	-		1)		
NV1 [2] [2] for the time set in the AL10 hour of the inverter1 [2] (see parameter (for suction inverter e alarm parameter parameter Inverter Suction 1 DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. 2 [2] Inverter 2 alarm DIC(i) = 140 [141] activation DOC(i) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. 1 and 2 inverter s) Eliquid level input <15% for alarm Only a warning: buzzer ON and alarm rele ON Automatially when 15% <liquid closure="" contact="" disc<="" for="" from="" level="" onsite="" reciever="" rupture="" td=""> Only a warning: buzzer ON and alarm rele ON Must be manually cleared onsite alarm rele ON 0IL DIFF Change separator element switch alarm contact closure from change oil separator input >1 minute Only a warning: buzzer ON and alarm rele ON Clear automatically when DI is false</liquid>	MANTI	Inverter 1	The inverter1 [2] has worked	Only signalling	Manually: reset the running
(for suction inverter maintenanc e alarm parameter parameter inverter Suction 1 [2] Inverter DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. 2 alarm DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. 1 and 2 alarm Sovering Automatically as soon as the Input is disabled. LIQ LVL Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">45min Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<89% REC Flash tank high pressure element switch alarm contact closure from reciever rupture lement Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite false</liquid </liquid>	NV1 [2]	[2]	for the time set in the AL10		hour of the inverter1 [2] (see
Suction 1 [2] Inverter 2 alarm DIC(i) = 140 [141] activation [2] Inverter 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. 40C (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically as soon as the Input is disabled. Vertices Vertices Aoc (I) = 3 or 12, [5] or [14] to 0V or 4mA Automatically when 15% LIQ LVL alarm Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">45min Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<89% REC FLOAT Flash tank high pressure disc contact closure from reciever rupture disc Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite and alarm relè ON OIL DIFF Change separator element switch alarm contact closeure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Clear automatically when DI is false</liquid </liquid>	(for	maintenanc	parameter		par 6.1)
Warnings LIQ LVL Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">45min Only a warning: buzzer ON and alarm relè ON Automatically as soon as the Input is disabled. LIQ LVL Reciever level alarm 80%<liquid <15%="" for<br="" input="" level="">45min Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<89% REC FLOAT Flash tank high pressure element switch alarm contact closure from change oil separator element Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite false</liquid </liquid></liquid>	inverter	e alarin			
Inverter DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. 2 Import for Suction 2 alarm DIC(i) = 140 [141] activation DOC(i) = 2 [4] is turned off. Automatically as soon as the Input is disabled. 3 Match and 2 inverter S Warnings Automatically when 15% Automatically when 15% LIQ LVL Reciever level alarm 80% <liquid 45min<="" <15%="" for="" input="" level="" th=""> Only a warning: buzzer ON and alarm relè ON Automatially when 15% Liquid level sever form reciever rupture only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite and alarm relè ON GIL DIFF Change separator element switch alarm contact closeure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Clear automatically when DI is false</liquid>)				
2 [2] Inverter off. off. he Input is disabled. Suction 1 and 2 [14] to 0V or 4mA the Input is disabled. inverter s) Warnings Imput is disabled. LIQ LVL Reciever level 80% <liquid <15%="" alarm<="" for="" input="" level="" td=""> Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid disc<="" level="" rupture="" sever="" td=""> FLOAT Flash tank high pressure disc contact closure from reciever rupture disc Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite is separator input >1 minute OIL DIFF Change separator element switch alarm contact closure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Clear automatically when DI is false</liquid></liquid>	Inverter	Suction 1	DIC(i) = 140 [141] activation	DOC(i) = 2 [4] is turned	Automatically as soon as
(for Suction 1 and 2 inverter s) 2 alarm AOC (I) = 3 or 12, [5] or [14] to 0V or 4mA Inverter s) Warnings LIQ LVL alarm Reciever level 45min 80% <liquid <15%="" for<br="" input="" level="">45min Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<89% REC FLOAT Flash tank high pressure separator element switch alarm contact closure from reciever rupture disc Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite and alarm relè ON OIL DIFF Change separator element switch alarm contact closeure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Clear automatically when DI is false</liquid </liquid>	2	[2] Inverter		off.	the Input is disabled.
Suction 1 and 2 inverter s) [14] to 0V or 4mA ElQ LVL Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">45min Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<89% REC Flash tank high pressure HI contact closure from reciever rupture disc Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite and alarm relè ON OIL DIFF Change separator element switch alarm contact closeure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Clear automatically when DI is false</liquid </liquid>	(for	2 alarm		AOC (I) = 3 or 12, [5] or	
1 and 2 inverter warnings S) Warnings LIQ LVL alarm Reciever level 80% <liquid <15%="" alarm="" and="" for="" input="" level="" on<="" relė="" td=""> Only a warning: buzzer ON and alarm relė ON Automatially when 15% <liquid <89%<="" level="" td=""> REC Flash tank high pressure disc contact closure from reciever rupture disc Only a warning: buzzer ON and alarm relė ON Must be manually cleared onsite and alarm relė ON OIL DIFF Change separator element switch alarm contact closeure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Clear automatically when DI is false</liquid></liquid>	Suction			[14] to 0V or 4mA	
Werter Warnings LIQ LVL Reciever level 80% <liquid <15%="" for<br="" input="" level="">alarm Only a warning: buzzer ON and alarm relè ON Automatially when 15% <liquid level <89% REC Flash tank high pressure contact closure from reciever rupture disc Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite OIL DIFF Change element switch alarm contact closeure from change oil separator Only a warning: buzzer ON and alarm relè ON Clear automatically when DI is false</liquid </liquid>	1 and 2				
Warnings LIQ LVL Reciever level 80% <liquid <15%="" for<br="" input="" level="">alarm Only a warning: buzzer ON and alarm relè ON Automatially when 15% <liquid level <89%</liquid </liquid>	s)				
LIQ LVL Reciever level alarm 80% <liquid <15%="" for<br="" input="" level="">45min Only a warning: buzzer ON and alarm relè ON Automatially when 15%<liquid level<89%</liquid </liquid>	-,	1	War	nings	1
alarm 45min and alarm relè ON level<89%	LIQ LVL	Reciever level	80% <liquid <15%="" for<="" input="" level="" th=""><th>Only a warning: buzzer ON</th><th>Automatially when 15%<liquid< th=""></liquid<></th></liquid>	Only a warning: buzzer ON	Automatially when 15% <liquid< th=""></liquid<>
REC FLOAT Flash tank high pressure contact closure from reciever rupture disc Only a warning: buzzer ON and alarm relè ON Must be manually cleared onsite OIL DIFF HI Contact closeure from change oil separator element switch alarm contact closeure from change oil separator input >1 minute Only a warning: buzzer ON and alarm relè ON Clear automatically when DI is false	L	alarm	45min	and alarm relè ON	level<89%
Image pressure	REC	Flash tank	contact closure from reciever rupture	Only a warning: buzzer ON	Must be manually cleared onsite
HI separator separator input >1 minute and alarm relè ON false false		nigh pressure	disc	and alarm rele ON	Olana automatically, where DU
element separation input > minute and alarminere ON laise		Change	contact closeure from change oil	Uniy a warning: buzzer UN	Clear automatically when DI is
switch alarm	nii	element	separator input > r minute	anu alami rele UN	10150
		switch alarm			

Code	Description	Cause	Action	Reset
Floodbac	Floodback	10 DDF >superheat (Suction	Only a warning: buzzer ON	Clear automatically superheat > 10
k	alarm	pressure & Suction temperature) for	and alarm relè ON	DDF
	l	90 minutes	L .	
DevillD	112-1-	Gas (cooler	
Rec	pressure on CO2 flash tank pre-alarm	GC29	in order to reach the correct percentage. If the flash tank pressure value is between the values GC29 and GC28 – 1	the HP REC is active or as soon as Al152 (Al153) < GC29 – GC30
			(bar), the % of valve opening is the following one:	
			Set Pre-Alarm Set of Point 1 Set of Point 1 Set of Point 1	
HP REC	High pressure on CO2 flash tank alarm	Al152 (Al153) > GC28	The HPV will close (0%). The BY-PASS will open to a user definable % set by the BY-PASS % Open parameter GC37. In case of parallel compression enabled(At least one of parallel compressor is working): -All the parallel compressors are forced to run with safety delays respected. -The BY-PASS valve is opened at GC26	Automatically as soon as AI152 (AI153) < GC28 – GC30
LP REC	Low pressure on CO2 flash tank alarm	Al152 (Al153) < GC31	The HPV will have a minimum opening of the HPV valve to a user definable % set by GC36. If the PID % is greater than GC36, then the PID % will be the valve % output. The BY-PASS will close.	Automatically as soon as AI152 (AI153) > GC31 + GC32
OA- XEV20D _1	XEV20D_1 offline alarm	The XEV20D_1 is used and loses communication.	Only signalling	The communication is recovered automatically.
OA- XEV20D _2	XEV20D_2 offline alarm	The XEV20D_2 is used and loses communication.	Only signalling	The communication is recovered automatically.

Code	Description	Cause	Action	Reset
High dischar ge temper ature				
HDi-T-1	High discharge temperatur e – Circuit 1	one of the probes set as Alxx = 156, 158, 69,70,, 80 >DSC4 && DSC5 timer exhausted	With DSC6 running: only warning With DSC6 exhausted: 1 compressors off every DSC7 sec	Automatically as soon as ALL the probes set as Alxx = 156, 158, 69,70,, 80Aixx < DSC4 – DSC3
HDi-T-2	High discharge temperatur e – Circuit 2	one of the probes set as Alxx = 157, 159, 81,82,, 92 >DSC11 && DSC12 timer exhausted	With DSC13 running: only warning With DSC13 exhausted: 1 compressors off every DSC14 sec	Automatically as soon as Alxx = 157, 159, 81,82,, 92 < DSC11 – DSC10
		Compressor Alarms -	- Parallel compression	
PC_Oil_ x (for each compre ssor)	Compressor safeties alarm for Oil switch load	Oil switch load Input activation. (the Input is configured as Parallel compression- Compressor x oil pressostate) NOTE: with step compressors Input for each compressor has to be used.	The corresponding compressor is turned off (with step compressors all relays referred to the Input are disabled).	Automatically as soon as the Input is disabled.
PC_Th_ x (for each compre ssor)	Compressor safeties alarm for Thermal switch load	Thermal switch load Input activation. (the Input is configured as Parallel compression- Compressor x Thermal Safety) NOTE: with step compressors Input for each compressor has to be used.	The corresponding compressor is turned off (with step compressors all relays referred to the Input are disabled).	Automatically as soon as the Input is disabled.
PC_Pr_ x (for each compre ssor)	Compressor safeties alarm for Pressure switch load	Pressure switch load Input activation. (the Input is configured as Parallel compression- Compressor x Safety pressostate) NOTE: with step compressors Input for each compressor has to be used.	The corresponding compressor is turned off (with step compressors all relays referred to the Input are disabled).	Automatically as soon as the Input is disabled.
PC_INV _Oil	Parallel compressor inverter safeties alarm for Oil switch load	Oil switch load Input activation. (the Input is configured as Parallel compression- Frequency compressor, oil pressostate)	The inverter parallel compressor is turned off.	Automatically as soon as the Input is disabled.
PC_INV _Th	Parallel compressor inverter safeties alarm for Thermal switch load	Thermal switch load Input activation. (the Input is configured as Parallel compression- Frequency compressor, Thermal Safety)	The inverter parallel compressor is turned off.	Automatically as soon as the Input is disabled.

Code	Description	Cause	Action	Reset
PC_INV _Pr	Parallel compressor inveryer safeties alarm for Pressure switch load	Pressure switch load Input activation. (the Input is configured as Parallel compression- Frequency compressor, Safety pressostate)	The inverter parallel compressor is turned off.	Automatically as soon as the Input is disabled.
Pc_INV	Parallel compressor inverter fault	Parallel compression– Inverter Safety (DI185) ON	The inverter parallel compressor becomes not available for the regulation (use the other parallel compressors resources, if available. Otherwise, come back to BY-PASS regulation)	Automatically as soon as parallel compression– Inverter Safety (DI185) OFF
INVO2 (for Suction inverter 2)	Inverter 2 safeties alarm for Oil switch load	Oil switch load Input activation. (the Input is configured as DICxx=227 Compressor oil Inverter 2 suction Circuit 1)	The corresponding inverter is turned off.	Automatically as soon as the Input is disabled.
INVT2 (for Suction inverter 2)	Inverter 2 safeties alarm for Thermal switch load	Thermal switch load Input activation. (the Input is configured as DICxx=229 Thermal Safety Inverter 2 suction Circuit 1)	The corresponding inverter is turned off.	Automatically as soon as the Input is disabled.
INVP2 (for suction inverter 2)	Inverter 2 safeties alarm for Pressure switch load	Pressure switch load Input activation. (the Input is configured as DICxx=228 Safety Inverter 2 Suction Circuit 1)	The corresponding inverter is turned off.	Automatically as soon as the Input is disabled.
MANTI NV1 [2] (for suction inverter)	Inverter 1 [2] maintenanc e alarm	The inverter1 [2] has worked for the time set in the AL10 parameter	Only signalling	Manually: reset the running hour of the inverter1 [2] (see par 6.1)
PC_INV 2_Oil	Parallel compressor inverter 2 safeties alarm for Oil switch load	Oil switch load Input activation. (the Input is configured as Parallel compression- Inverter 2 compressor, oil pressostate)	The inverter 2 parallel compressor is turned off.	Automatically as soon as the Input is disabled.
PC_INV 2_Th	Parallel compressor inverter 2 safeties alarm for Thermal switch load	Thermal switch load Input activation. (the Input is configured as Parallel compression- Inverter compressor, Thermal Safety)	The inverter 2 parallel compressor is turned off.	Automatically as soon as the Input is disabled.
PC_INV 2_Pr	Parallel compressor inverter 2 safeties alarm for Pressure switch load	Pressure switch load Input activation. (the Input is configured as Parallel compression- Inverter compressor, Safety pressostate)	The inverter 2 parallel compressor is turned off.	Automatically as soon as the Input is disabled.

Code	Description	Cause	Action	Reset
Pc_INV 2	Parallel compressor inverter 2 fault	Parallel compression– Inverter 2 Safety (DI236) ON	The inverter 2 parallel compressor becomes not available for the regulation (use the other parallel compressors resources, if available. Otherwise, come back to BGV regulation)	Automatically as soon as parallel compression– Inverter Safety (DI238) OFF
	•	FLASH TAI	NKALARMS	•
LLIQ	Low liquid level alarm	Liquid level probe AICxx 135, <=AL47 for delay AL49, there will be Low level alarm	Only signalling	Automatically when liquid level probe >= AL47+AL50
HLIQ	Hi liquid level alarm	Liquid level probe AICxx 135, >=AL48 for delay AL49, there will be high level alarm	Depneding on AL51: AL51 = YES, the compressor of the circuit 1 and parallel are switched off every 1 sec at the same time, the compr. of circuit 2 switched off every 1 after all the compressor of circuit 1 are off	Automatically when liquid level probe <= AL48-AL50 All the compressors restart working according to regulation.

